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1. INTRODUCTION

A divisor d of n is a wunitary divisor if ged (d, n/d) = l; in such a case,
we write dlln. There is a considerable body of results on functions of unitary
divisors (see [2]-[7]). Let T*(n) and 0*(n) denote, respectively, the number
and sum of the unitary divisors of . ’

We say that a divisor d of n is a non-unitary divisor if (d, n/d) > 1. If
d is a non-unitary divisor of n, we write d|'xn. In this paper, we examine some
functions of non-unitary divisors.

We will find it convenient to write
n=mnent,

where 7 is the largest squarefree unitary divisor of n. We call n the square-
free part of n and n' the powerful part of n. Then, if p is prime, pl# implies
pln, while plnt implies p?ln. Naturally, either 7 or n? can be 1 if required
(if n is powerful or squarefree, respectively).

2. THE SUM OF NON-UNITARY DIVISORS FUNCTION

Let o#(n) be the sum of the non-unitary divisors of n:
otm) = ¥ d.
dltn

Now, every divisor is either unitary or non-unitary. Because n and nt are
relatively prime and the 0 and 0* functions are multiplicative, we have

ot(n) = o) - o*(n) = c@omt) - c*M)o*(nt).
But 0(n) = o*(7), so
ot(n) = o {om*) - o*(nh)}.

Therefore,

petl _ 1
otn) = { IT @ +.1)} . I _— - I (pe + DHV.
plin z?T p p?T

Note that o#(n) = 0 if and only if »n is squarefree, and that of is not multi-
plicative.

Recall that an integer »n is perfect [unitary perfect] if it equals the sum
of its proper divisors [unitary divisors]. This is usually stated as o(n) =2n
[o*(n) = 2n] in order to be dealing with multiplicative functions. But all non-
unitary divisors are proper divisors, so the analogous definition here is that
n is non-unitary perfect if ot(n) = n.
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Theorem 1: If 2° - 1 is prime, so that 2p_1(2p - 1) is an even perfecﬁ number,
then 2°*1(2P - 1) is non-unitary perfect.
Proof: Suppose n = 2°*1(2P - 1), where p is prime. Then
of (n) = o(2P - D){o2P*h) - o*(2"* 1)}
2P[(2P*% - 1) - (2P*% + 1)]
2P — 2y = 2P (2P - 1) = 4.

it

A computer search written under our direction by Abdul-Nasser El-Kassar
found no other non-unitary perfect numbers less than one million. Accordingly,
we venture the following:

Conjecture 1: An integer is non-unitary perfect if and only if it is 4 times an
even perfect number.

If n# is known or assumed, it is relatively easy to search for n to see if
7n- is non-unitary perfect. Many cases are eliminated because of having o#(nt) >
n#. In most other cases, the search fails because 7 would have to contain a
repeated factor. For example, if n# = 2252, then no 7 will work, for

o#(2%5%) = 7+31 - 5+26 =87 = 3-29,
so 3+ 291n; but 225%291n implies 3%ln, so 3% is impossible.

The second author generated by computer all powerful numbers not exceeding
2'%, Examination of the various cases verified that there is no non-unitary
perfect number n with n# < 2'° except when n satisfies Theorem 1 [i.e., n =
2P*1 (2P - 1), where 2P - 1 is primel]. :

More generally, we say that n is k-fold non-unitary perfect if ot(n) = kn,
where k¥ > 1 is an integer. We examined all n# < 2?° and all »n < 10° and found
the k-fold non-unitary perfect numbers (k> 1) listed in Table 1. Based on the
profusion of examples and the relative ease of finding them, we hazard the fol-
lowing (admittedly shaky) guess:

Conjecture 2: There are infinitely many k-fold non-unitary perfect numbers.

Table 1. k-fold Non-Unitary Perfect Numbers (k > 1)

k n

2 2%8325.7 = 2520

2 2%3%5. 29 = 31 320

2 2%3%5.359 = 1 163 160

2 273%71 = 2 208 384

2 2%327 < 13+ 233 = 3 053 232

2 273331+ 61 = 6 535 296

2 25327« 41+ 163 = 13 472 928

2 25523+ 19+ 37+ 73 = 123 165 600

2 273%47 - 751 = 365 959 296

2 2%3%11 - 131 « 2357 = 4 401 782 352

2 293¢ 5.7¢19+37.73 =5 517 818 880
3 273252 .7+ 1371 = 186 076 800

3 283547« 11+53+769 = 325 377 803 520
3 2632725 .13« 19« 113+ 677 = 2 666 567 816 640
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We say that n is won-unitary subperfect if o?(n) is a proper divisor of n.
Because 0#(18) = 9 and o#(p?) = p if p is prime, we have the following:

Theorem 2: If n = 18 or n = pz, where p is prime, then » is non-unitary sub-
perfect.

An examination of all n# < 2% and all » < 10° found no other non-unitary
subperfect numbers, so we are willing to risk the following:

Conjecture 3: An integer » is non-unitary subperfect if and only if »n = 18 or
n = p?, where p is prime.

It is possible to define non—unitary harmonic numbers by requiring that the
harmonic mean of the non-unitary divisors be integral. If T#(n) = T(n) - T*(n)
counts the number of non-unitary. divisors, the requirement is that nttm)y/otn)
be integral. We found several dozen examples less  than 10%, including all k-
fold non-unitary perfect numbers, as well as numbers of the forms

2+3p%, p?(2p - 1), 2+ 3p2(2p - 1), 2P%13(2F - 1), 2P713. 5027 - 1),
and 2P%1(2p - 1)(2F - 1),

where p, 2p - 1, and 2P - 1 are distinct primes. Many other examples seemed to
fit no general pattern.

Recall that integers » and m are amicable [unitary amicable] if each is
the sum of the proper divisors [unitary divisors] of the other. Similarly, we
say that n and m are non-unitary amicable if

o*(m) =m and of(m) = n.

Theorem 3: If 2P - 1 and 27 - 1 are prime, then 2°%%(29 - 1) and 2771 (27 - 1)
are non-unitary amicable.

Proof: Trivial verification.

Thus, there are at least as many non-unitary amicable pairs as there are
pairs of Mersenne primes. Our computer search for n < m and n € 10% revealed
only four non-unitary amicable pairs that are not characterized by Theorem 3:

n = 252 = 22377 m = 328 = 2341

n = 3240 = 2%3"%5 m = 6462 = 2+ 37359

n = 11616 = 2°3« 11?2 m= 17412 = 22« 3« 1451

n = 11808 = 2°3%41 m = 20538 = 2¢ 3%« 7163

3. THE NON-UNITARY ANALOG OF EULER'S FUNCTION

Euler's function

v(n) = n [l (l - é) = I ¢ -p°™hH

pin pelin
is usually defined as the number of positive integers not exceeding » that are
relatively prime to »n. The unitary analog is
1

e*(m) =n I (1 -= )= JI (- 1).
an< p ) peln P
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Our first task here is to give equivalent alternative definitions for ¢ and
¢* which will suggest a non-unitary analog. In particular, we may define ¢(n)
as the number of positive integers not exceeding »n that are not divisible by
any of the divisors d > 1 of n. Similarly, ¢*(n) may be defined as the number
of positive integers not exceeding »n that are not divisible by any of the uni-
tary divisors d > 1 of n.

Recalling that 1 is never a non-unitary divisor of n, it is natural in
light of the alternative definitions of ¢ and ¢* to define ¢#(n) as the number
of positive integers not exceeding » that are not divisible by any of the non-
unitary divisors of n. By imitating the usual proofs for ¢ and ¢*, it is easy
to show that ¢# is multiplicative, and that

ot(n) = ne(nt). (1)
The following result neatly connects divisors, unitary divisors, and non-

unitary divisors in a, perhaps, unexpected way:

Theorem L4: Y. o#(d) = o*(n).
dln

Proof: The Dirichlet convolution preserves multiplicativity, and ¢# is multi-
plicative, so we need only check the assertion for prime powers. In light of
(1), doing so is easy, because the sum telescopes:

2 i)
dlpe

ot(1) + ¢t(p) + @t(P®) + -+ + ¢#(°)
L+p+ @2 -p) + -+ @°-p°™")
=1+ pe =0c*@p®).

It is well known that

2 ed =n and Y ¢xd) =mn,
din dlin

and one might anticipate a similar result involving ¢#. However, the situation
is a bit complicated. We write

Yoetd) =¥ efd) - % eHd). (2)
ditn din dlin

Now, both convolutions on the right side of (2) preserve multiplicativity and,
as a result, it is possible to obtain the following:

Theorem 5: 3 o#(d) = O(ﬁ)«{o*(n#) - IO @ -p° '+ 1)}
ditn pelfn”
Theorem 5 was first obtained by Scott Beslin in his Master's thesis [1],
written under the direction of the first author of this paper.

Two questions arise in connection with Theorem 5. First, is it possible to
find a subset S(n) of the divisors of n for which

T ofd) = n
deS(n)
It is indeed possible to do so. Let w(n) be the number of distinct primes that
divide n. We say that d is an w~-divisor of n if dln and w(d) = w(n), i.e., if
every prime that divides n also divides d. Let Q(n) denote the set of all w-
divisors of n.
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Theorem 6: Y. o#d) = =.
de Q(n)
Proof: Trivial if w(n) = 0. But if w(n) = 1, the sum is that in the proof of

Thgorem 4 except that the term "¢¥*1) = 1" is missing. Easy induction on w(x),
using the multiplicativity of ¢#, completes the proof.

The other question that arises from Theorem 5 is whether it is possible to
have

%;7 eMd)y =n, n> 1. (3)

We know of ten solutions to (3), and they are given in Table 2. By Theorem 5,
if n satisfies (3), then

o(m)/n n#/{o*<n#) - Il (& - pet + 1)}. (%)

pelin?

This observation makes it easy to search for n if »n# is known. The first eight
numbers in Table 2 are the only solutions to (3) with 1 < »n < 2%°,

Table 2. Solutions to (3), Ordered by nf

n nt n

5 220 27232
3 960 2332
8 447 040 2637
6 773 440 2732
18 685 336 320 2832
341 863 562 880 2733
1 873 080 2332117
1 018 887 932 160 2834
20 993 596 382 889 043 200 283252
357 174 165 248 21332

- 29

- 11

°» 7+ 419

° 7167

7+ 139 - 1667

e 79290 41+ 2377

= 43

719+ 37.1997

¢« 19« 2393 - 23929 « 47857
«11-13+47-103

~N Ut bt e
.

It seems unlikely that one could completely characterize the solutions to
(3). However, we do know the following:

Theorem 7: If n > 1 satisties (3), then n? is divisible by at least two dis-
tinct primes.

Proof: We must have n? > 1 because 0(n) 2 n with equality only if » = 1. Sup-
pose n# = p?, where p is prime and ¢ 2 2. Then, from (4), we have c(n)/n = p.
1f p = 2, then n is an odd squarefree perfect number, which is impossible. Now,
7 is squarefree, and any odd prime that divides » contributes at least one
factor 2 to o(n), and since p # 2, we have 21%. Then n = 2q, where g is prime,
and the requirement o(n)/% = p forces ¢ = 3/(2p - 3), which is impossible if
p > 2.

We strongly suspect the following is true:
Conjecture 4: If »n satisfies (3), then n# is even.
If the right side of (4) does not reduce, then Conjecture 4 is true: If we

suppose that n# is odd, then 4lo*(n#), as n# has at least two distinct prime
divisors by Theorem 7. Then, it is easy to see that the denominator of the
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right side of (4) is of the form 4k - 1, and if the right side of (4) does not
reduce, then 7 is of the form 4k - 1, whence 4lo(#), making (4) impossible.
Thus, any counterexample to Conjecture 4 requires that the fraction on the
right side of (4) reduce.
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