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1. INTRODUCTION 

A divisor d of n is a unitary divisor if gcd (d9 n/d) = 1; in such a case, 
we write d\\n. There is a considerable body of results on functions of unitary 
divisors (see [2]-[7]). Let T*(ft) and 0*(n) denote, respectively, the number 
and sum of the unitary divisors of n. 

We say that a divisor d of n is a non-unitary divisor if (d9 n/d) > 1. If 
d is a non-unitary divisor of n, we write d\^n. In this paper, we examine some 
functions of non-unitary divisors, 

We will find it convenient to write 

n = n * n#, 

where n is the largest squarefree unitary divisor of n. We call n the square-
free part of n and n# the powerful part of ft. Then, if p is prime, p\n implies 
plift, while plft# implies p2\n« Naturally, either n or ft# can be 1 if required 
(if ft is powerful or squarefree, respectively). 

2. THE SUM OF NON-UNITARY DIVISORS FUNCTION 

Let a* (ft) be the sum of the non-unitary divisors of m 

oHn) = E d. 
d\*n 

Now, every divisor is either unitary or non-unitary. Because ft and ft# are 
relatively prime and the G and O* functions are multiplicative, we have 

a#(?z) = a(ft) - a*(ft) = a(ft)a(ft#) - a*(ft)a*(ft#)-

But a(ft) = a*(ft), so 

oHn) = a(ft){a(ft#) - a*(ft#)K 

Therefore, 

oHn) = ( n (p + D 1 . j n p'+1 "il - n (pe + D I . 
I plln j I PeWn P - 1 p*||n ( 

Note that Q#(ft) = 0 if and only if n is squarefree, and that C# is not multi-
plicative. 

Recall that an integer n is perfect [unitary perfect] if it equals the sum 
of its proper divisors [unitary divisors]. This is usually stated as G(ft) =2ft 
[a*(ft) = 2ft] in order to be dealing with multiplicative functions. But all non-
unitary divisors are proper divisors, so the analogous definition here is that 
ft is non-unitary perfect if G#(ft) = ft. 
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Theorem 1: If 2P - 1 is prime, so that 2P~1(2P - 1) is an even perfect number, 
then 2P (2P - 1) is non-unitary perfect. 

Proof: Suppose n = 2P+1(2P - 1), where p is prime. Then 

oHn) = a(2p - l){o(2p+1) - a*(2p + 1)} 

= 2p[(2p+2 - 1) - (2p+ 2 + 1)] 

2P/2P+i 2) ,P+i (2p - 1) 

A computer search written under our direction by Abdul-Nasser El-Kassar 
found no other non-unitary perfect numbers less than one million. Accordingly, 
we venture the following: 

Conjecture 1: An integer is non-unitary perfect if and only if it is 4 times an 
even perfect number. 

If n# is known or assumed, it is relatively easy to search for n to see if 
n is non-unitary perfect. Many cases are eliminated because of having a#(^#)> 
n#. In most other cases, the search fails because n would have to contain a 
repeated factor. For example, if n # = 2252, then no n will work, for 

a#(2252) = 7 • 31 - 5 • 26 = 87 = 3 • 29, 

so 3* 29\n; but 225229lln implies 32ln, so 3ln is impossible. 

The second author generated by computer all powerful numbers not exceeding 
Examination of the various cases verified that there is no non-unitary 

perfect number n with n# < 2 1 5 except when n satisfies Theorem 1 [i.e., n = 
2P + i(2P _ 1 ) 5 w h e r e 2p _ 1 ± s p r i m e ] > 

More generally, we say that n is k-fold non-unitary perfect if o#(n) = kn9 
where k ^ 1 is an integer. We examined all n # < 2 1 5 and all n < 106 and found 
the k-fold non-unitary perfect numbers (/c>l) listed in Table 1. Based on the 
profusion of examples and the relative ease of finding them, we hazard the fol-
lowing (admittedly shaky) guess: 

Conjecture 2: There are infinitely many fe-fold non-unitary perfect numbers. 

Table 1. fe-fold Non-Unitary Perfect Numbers (k > 1) 

,15 

k 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 

n 

23325 • 7 = 2520 
23335 • 29 = 31 320 
23345 • 359 = 1 163 160 
273571 = 2 208 384 
24327 • 13 • 233 = 3 053 232 
273331 - 6 1 = 6 535 296 
25327 • 41 • 163 = 13 472 928 
25523 • 19 • 37 • 73 = 123 165 600 
273447 * 751 = 365 959 296 
2if34ll • 131 • 2357 = 4 401 782 352 
2103 • 5 • 7 • 19 • 37 • 73 = 5 517 818 880 
273252 • 7 • 13 • 71 = 186 076 800 
28345 • 7 • 11 -53 • 769 = 325 377 803 520 
2632725 • 13 • 19 • 113 • 677 = 2 666 567 816 640 
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We say that n is non-unitary subperfect if a#(n) is a proper divisor of n. 
Because a#(18) = 9 and a#(p2) = p if p is prime, we have the following: 

Theorem 2: If n = 18 or n - p 2
9 where p is prime9 then n is non-unitary sub-

perfect. 

An examination of all n* ^ 2 and all n ^ 106 found no other non-unitary 
subperfect numbers, so we are willing to risk the following: 

Conjecture 3- An integer n is non-unitary subperfect if and only if n = 18 or 
n = p2, where p is prime. 

It is possible to define non-unitary harmonic numbers by requiring that the 
harmonic mean of the non-unitary divisors be integral. If T#(n) = x(n) - T*(n) 
counts the number of non-unitary divisors, the requirement is that nT#(n)/a#(ft) 
be integral. We found several dozen examples less than 10 , including all Re-
fold non-unitary perfect numbers, as well as numbers of the forms 

2 • 3p2
9 p2(2p - 1), 2 • 3p2(2p - 1), 2P+13(2P - 1), 2P + 13 • 5(2P - 1), 

and 2p+1(2p - 1) (2P - 1), 

where p, 2p - 1, and 2P - 1 are distinct primes. Many other examples seemed to 
fit no general pattern. 

Recall that integers n and m are amicable [unitary amicable] if each is 
the sum of the proper divisors [unitary divisors] of the other. Similarly, we 
say that n and m are non-unitary amicable if 

o^(n) = m and o#(m) = n. 

Theorem 3: If 2P - 1 and 2q - 1 are prime, then 2P + 1(2^ - 1) and 2^+1(2p - 1) 
are non-unitary amicable. 

Proof: Trivial verification. 

Thus, there are at least as many non-unitary amicable pairs as there are 
pairs of Mersenne primes. Our computer search for n < m and n K 106 revealed 
only four non-unitary amicable pairs that are not characterized by Theorem 3: 

n = 252 = 22327 m = 328 = 2341 

n = 3240 = 233lf5 m = 6462 = 2 • 32359 

n = 11616 = 253 • ll2 777 = 17412 = 22 • 3 • 1451 

n = 11808 = 253241 m = 20538 = 2 •• 32 • 7 • 163 

3. THE NON-UNITARY ANALOG OF EULER'S FUNCTION 

Euler!s function 

Hn) = n n ( l - J ) = II (Pe ~ P""1) 
P\n x V ' pe\\n 

is usually defined as the number of positive integers not exceeding n that are 
relatively prime to n. The unitary analog is 

<p*w = n n (i - - V ) = n (pe - i ) . 
pe\\n V pe\\n 
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Our first task here is to give equivalent alternative definitions for (f and 
(f* which will suggest a non-unitary analog. In particular, we may define <p(n) 
as the number of positive integers not exceeding n that are not divisible by 
any of the divisors d > 1 of n. Similarly, <p*(n) may be defined as the number 
of positive integers not exceeding n that are not divisible by any of the uni-
tary divisors d > 1 of n. 

Recalling that 1 is never a non-unitary divisor of n9 it is natural in 
light of the alternative definitions of <p and (p* to define cp#(ji) as the number 
of positive integers not exceeding n that are not divisible by any of the non-
unitary divisors of n. By imitating the usual proofs for <p and cp* , it is easy 
to show that <p# is multiplicative, and that 

<pHn) = n<p{n$). (1) 

The following result neatly connects divisors, unitary divisors, and non-
unitary divisors in a, perhaps, unexpected way: 

Theorem ki £ <P#(d) = o*(n). 
din 

Proof: The Dirichlet convolution preserves multiplicativity, and <p# is multi-
plicative, so we need only check the assertion for prime powers. In light of 
(1), doing so is easy, because the sum telescopes: 

£ <p*(d) = <?#(i) + <p#(p) + (pHp2) + ••• + <p#(pe) 

= 1 + P + (p2 " P ) + ••• + (pS - p6'1) 

= I + pe = (J*(pe) . 

I t i s w e l l known t h a t 

£ <p(d) = n and £ <P*(d) = n , 
d\n d\\n 

and one might anticipate a similar result involving <p#. However, the situation 
is a bit complicated. We write 

E vHd) = £ ?*(d) - £ vHdy. (2) 
d l # n d\n d\\n 

Now, both convolutions on the right side of (2) preserve multiplicativity and, 
as a result, it is possible to obtain the following: 

Theorem 5: £ <P*(d) = o(n)fo*(n#) - U (pe ~ p6'1 + 1)1 
d\'n { Pelln* } 

Theorem 5 was first obtained by Scott Beslin in his Master's thesis [1], 
written under the direction of the first author of this paper. 

Two questions arise in connection with Theorem 5. First, is it possible to 
find a subset Sin) of the divisors of n for which 

£ <p*(d) = n? 
deS(n) 

It is indeed possible to do so. Let 0)(n) be the number of distinct primes that 
divide n. We say that d is an Ud-divisor of n if d\n and u>(d) = w(n), i.e., if 
every prime that divides n also divides d. Let ti(n) denote the set of all 03-
divisors of n. 
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Theorem 6: J2 <P^(d) = n. 
de Q(n) 

Proof: Trivial if 0)(n) = 0. But if oj(n) = 1, the sum is that in the proof of 
Theorem 4 except that the term V ( l ) = 1" is missing. Easy induction on 60(72) , 
using the multiplicativity of <p#, completes the proof. 

The other question that arises from Theorem 5 is whether it is possible to 
have 

Y, <P*(d) = n, n > 1. (3) 
d\n 

We know of ten solutions to (3), and they are given in Table 2, By Theorem 55 

if n satisfies (3), then 

o(n)/n = n#/|a*(n#) - H (pe - p e _ 1 + 1)1. (4) 
I p e \ \ n § ) 

This observation makes it easy to search for n if n# is known. The first eight 
numbers in Table 2 are the only solutions to (3) with 1 < n < 21 5. 

Table 2. Solutions to (3), Ordered by n# 

n 

18 
341 

1 018 
20 993 596 382 

357 

8 
6 

685 
863 
1 

887 
889 
174 

5 
3 

447 
773 
336 
562 
873 
932 
043 
165 

220 
960 
040 
440 
320 
880 
080 
160 
200 
248 

n# 

2232 

2332 

2632 

2732 

2832 

2733 

2332112 

2834 

283252 

21332 

n 

5 - 29 
5 • 11 
5 • 7 • 419 
5 • 7 • 167 
5 • 7 • 139 - 1667 
5 . 7 . 29 • 41 • 2377 
5 • 43 
5 . 7 . 19 . 37 . 1997 
7 • 19 • 2393 • 23929 • 
7 • 11 • 13 • 47 • 103 

47857 

It seems unlikely that one could completely characterize the solutions to 
(3). However, we do know the following: 

Theorem 7: If n > 1 satisties (3), then n # is divisible by at least two dis-
tinct primes. 

Proof: We must have n# > 1 because O(n) ^ n with equality only if n =_l-_ Sup-
pose n# = pe

s where p is prime and e > 2. Then, from (4), we have o(n)/n = p. 
If p = 2, then n is an odd squarefree perfect number, which is impossible. Now, 
n is squarefree, and any odd prime that divides n contributes at least one 
factor 2 to o(n) , and since p f 2, we have 2||n. Then n = 2q, where q is prime, 
and the requirement o(n)/n = p forces q = 3/(2p - 3), which is impossible if 
p > 2. 

We strongly suspect the following is true: 

Conjecture k: If n satisfies (3), then n# is even. 

If the right side of (4) does not reduce, then Conjecture 4 is true: If we 
suppose that n# is odd, then 4la*(n#)> as n# has at least two distinct prime 
divisors by Theorem 7. Then, it is easy to see that the denominator of the 
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right side of (4) is of the form 4fc - 1, and if the right side of (4) does not 
reduce, then n is of the form 4fc - 1, whence 4la(n), making (4) impossible. 
Thus, any counterexample to Conjecture 4 requires that the fraction on the 
right side of (4) reduce. 
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