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1. INTRODUCTION

In [1], Horadam and Mahon define a family of »n X n matrices V, in connec-
tion with the Pell polynomials U, (x). They conjecture that the characteristic

polynomial of V, is given by

) = 3 (DR FR2g ek (1.1)
where koo . )
{n, k} ='Eﬁlg(x)//{L[Q(x)'[EUi(x). (1.2)

In this paper we prove the conjecture of Horadam and Mahon and also derive

various other results concerning the structure of V, and C,(R).

2. NOTATION

The Pell polynomials are defined recursively by

]

Uglx) =0, U (x) =1,
Uy (@) = 22U, _;(x) + U, ,(x) (n =2 2)

and the associated Pell-~Lucas polynomials by
Wo(x) =2, W (x) = 2x,
W, (x) = 2xW, _ (x) + W, _,(x) n=22).

In this paper, to keep the notation as simple as possible, we shall work

with the following closely related polynomials in the indeterminate ¢:

Po(t) = 0, Pl(t) =1,

Pn(t) = tPn_l(t) + Pn_z(t) (n 2 2)
and

Q,(8) =2, Q) = ¢,

Q,(t) =tq, (&) +q,_,(&) (n>2).

Standard manipulations with difference equations give the Binet formulas:

P, (£) = (@ - B™/(a - B) and @ () = o + 8",
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where o, B are the roots of the polynomial y? - ty - 1;
= 20t + V27 ¥ 4] and = 20t - VBT T 4.

We shall require the easily proven identity

/2y, _ 4
B, = ¥ (" E l)t”“l“”‘- (2.1)
k=1

V, is defined to be the n x n matrix whose (Z, J) entry is
_ J-1 i+j-n-1
V)i (j +1-n - 1>t ’
for example,

0 0 0 1
—_— 0 1 3¢
4 0 1 2t 3%2
1 ¢t t? t3

3. A SIMILARITY TRANSFORMATION ON V,

The main result of this section (Theorem 3.2) shows that V, is similar to
a particularly nice matrix in block upper triangular form. This form will lead
to a recursion for the characteristic polynomial of V.

Let T, be the n X »n matrix whose columns carry the recurrence satisfied by

P, (-t), i.e.,

1, if =4
Ve, if =g 41
Twdij =9-1, if i =4 +2

0, otherwise.

Then we have
Lemma 3.1: The inverse of T, is given by

1, if 7

-1 _ . .
T )y =90 it
Pk+l(—t), if 7

[INVANN]

+ k.

Proof: Let A4 denote the matrix defined in the statement of the Lemma, and let
B =1T,A. Then B is lower triangular, with diagonal elements all equal to one.

A typical element below the diagonal has the form
p,(-t) + tPi_l(—t) - P, _,(-t) = Pi(—t)-(—t)Pi_l(—t)-Pi_2(~t) =0,
since this is the recursion defining Pi(—t). Thus, B = 1 and 4 = T;l. ]
-Va-o X

Theorem 3.2: The matrix T;lijn has the block form , where X is

(n - 2)x2, Y is 2 x 2, and 0 !
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P, (%) P, ()

TSp ) P,

n—l(

Proof: First we show, by induction, that the first 7 - 2 columns of the matrix

A= (az) =T,'YT,

have the desired form.

The 7™ row of T;l is

7

R, =[P, (-t), Pi-l(—t)’ N PZ(—t), 1, 0, ..., 0]

and the jth column of V, T, is C; = col(x,, ..., x,), where
x, = 0 (k=1, 2, ve.y =g = 2)
Ly 51 = -1
Tp_j; = —(j T 1>t + ¢

Ln-j+k = -(}1 i i)tk“ + (i)tk“ + (i _ i)tk‘l.

Then a. is the dot product R; * Cj, and to start the induction, we have:

J
a;; =0 if n - Jg-221
a;s = -lifn-4-2=7-1
_ (7 -1 , i e
a;; = ( 1 )t if »n J 2 =1 2
_(d = 1y, . o s
a;; = ( 5 )t if n - g 2 =1 3.

Now suppose that, if 0 S s <randn - j - 2 =7 - s, then

Aij = ‘(i - i)ts—l'

Then, forn - j - 2 =171 - r,

i

z
Qi = 2 Pi+1-k(_t)xk = 2 P“l_k(—t)xk
k=1 k=i-r+1
i-1
= 2 Pryrog GB)xy + Pr(=t)x,
k=71-r+1
i-1
= E [(-8)P; _((=t) + P, (-)]x, + P (-t)x;
k=i-r+1

o] - )] (e

+ (P { 2)251“l + (i : ;)tr-s (continued)
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=0 D)

This completes the induction.

From the definition of Vh, the Jth column of V, ., must be

-

col[O, 0, «.ur 0, 1, (j I 1>t, (j ) l)t s eees (? - ;>tj—z, tj—lJ;

1

therefore, the upper left diagonal (n 2y x (n - 2) block of Tanng is indeed

-V

n-2"°
The entries p-1,; and Ay, ; for 1 < J <n - 2 are all zero because, if 7 =
n -1, thenn - J - 2 =42 - » implies » = 7 + 1. Then the term
e G T A )
r -1 J

ifZ1=nandn-jJ-2=42 - 1r, thenr = j + 2 and we have

g ) T

r -1 g+ 1
It remains to show that the lower right diagomal 2 x 2 block of T;1K11% is
given by
P, (%) P, @)
Ppy(B) Py, (8)

We shall compute a,, , in detail. The other three cases are similar. Recalling

that
Rn = [Pn(_t>’ Pn—l(—t)’ L ] PZ(_t)’ 1]
and
n -1 n - 1\,2 n-1
c, = col[l, ("7 e (P ) e e ],
we have
e A 2
a””lzzggi(n r)E B D)
n-1 [(z=-k)/2] .
n - 1 % ﬂ—k—}.—J n-k-1-27
= ek 2 , (-t) .
kg:o( k ) Jj=0 ( J >

by (2.1). Reversing the order of summation gives
/2y L L, " - I\yn -4 -k -1 —k-1-25
Il () LK R (SO
j=0 k=0
Consider the inner sum

e

. - -k - -1
When kK = »n - 2j, the binomial coefficient (n J J k 1)= (‘7 . ) = 0, so
we may take the upper limit to be n - 25 - 1.
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Now, make the substitution p =n - 25 - 1 in S to get

14 . . 14 . .
- p+ 2j\(p+J = Kk\,_1yp-k _ p+2j\(p+J = Kk\_iyp-k
s=x (PRI THen DI G [ (O (S L
p ;:ZJ) is the coefficient of ak in the expansion of (1 + x)p+2j

Note that (
and that (p ; i ; k)(—l)p_k is the coefficient of zP % in the expansion of
(1 + x)‘j_l. Then S is the coefficient of z? in the expansion of

(1 + x)P+20-31 = (1 + 2)"~9-2,

that is,
_(n-d-2\_(n-Jd-2
s=(n: 2j - 1) ( i-1 )-
Returning to the calculation of a, ,, we have
[n/2] . 4 [(n=2)/2]
- -1-2j(n = J - 2) _ n =3 - k\,n-3-2k

Apnon = Z " J( Jg -1 )_ Z ( k )tn

ji=0 k=0

(eliminating zero terms and replacing j - 1 by k). Thus, a, , =P, _,(¢), by

(2.1). The sums for a, .., @ , and a can be evaluated by the same

n-1,n n-1,n-1

methods, but we omit the proofs here. m

L. THE CHARACTERISTIC POLYNOMIAL OF Vh(t)

Let 4, denote the matrix T,'V,T, and let C,(\) be the characteristic poly-

nomial of V,. As before, let ¥ =Y, be the matrix

P,(t) P, (£)
Tn =l p, &) Po,(®) |

In this section, we establish some basic properties of C, (A) and prove the

conjecture of Mahon and Horadam.

Lemma 4.1: The characteristic polynomial C,(A) of V, satisfies the recurrence:

C,(A) =A% - £x - 1
C,(0) = A+ DA% + @, ()X + 1)
C,(N) = (-D"7%C, ,(-M)(A? =@, (&)X + (-)" ).

Proof: Since A, and V, are similar, C,()) = IKI -4,

A

. By the block form of

ne

AT -4, = A1 +7,_,

° IH—YVLI‘

Since P, ()P, _,(t) = P,_,(£)? = (-1)""% and B, (t) + P,_,(t) = @,_,(£),
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T -7, =A% - g, _ (8N + (D"

1

Since ]KI + V| (-1)*7%C, _,(-A), Lemma 4.1 follows. m

Corollary k.2:
a) If n is even, say n = 2k, then
k-1 .
Cor (M) = [T (W* - Dparony (B) = (=1)7X = 1),
Jj=0

and the characteristic roots of (', (A) are
(=13 227, (~1)dpr22% .5 =0, 1, ..., k ~ 1}.

b) If »n is odd, say n = 2k + 1, then

k-1 )
C127<+1(>\) = (O - ("l)k) Il ()\Z - Qnul_zj ()« (-1)Ix + 1),

J=0

and the characteristic roots of C (A) are

2k+1
{(-DF, (-1 1727, (~1)¥p""1"27: 5 =0, 1, ..., k - 1}.

Proof: We prove b); the proof of a) is similar. From Lemma 4.1, we get
Co(0) = (W% - Q,(E)A + 1) (A - QL) (=) + (A - 1),

and from the recurrence, for m =2 5, we derive

C,(0) = (A% = 4Q,_ Br+ DO = q, (&)= + DI, ().

11

Since C;(A) has the factor (A + 1), 1if » 3 (mod 4), C,(X) will also have the
the factor
L+ 1) = A+ (- n/z,

Since C4(A) has the factor (A = 1), if »n

11

1 (mod 4), C,(}) will also have the
factor

(L= 1) = A+ (-1HI7V/2,
The rest of b) is clear.

The charvacteristic roots of (,{A) are the roots of its factors. We have

ti

(- ahHo- ) =A% - @+ 8D+ @B =27 - Q) + (-1

and .
A2~ QL (Y- + (=17,

v 5

o+ ad)yOn + gD

and this completes the proof. @

Define the coefficient {n., k} by

n k s
{n, k} = T1L P, (&) /11 P, () T1 P, (%)
=1

/oi=1 =1
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and define the polynomial R, (A) by
n
R,(0) = 3 (-1 20, gk,
k=0
The next theorem states that R,()A) = C,(A). Then the conjecture of Mahon

and Horadam follows by making the substitution ¢ = 2x.
Theorem 4.3: For all n > 2, R, (}) = C,(N).

Proof: It is easy to verify the cases n = 2, 3. Thus, we need only show that

R,()\) satisfies the recurrence of Lemma 4.1; that is, we must show that

R,(N) = DR, (=0 A% - @, ()X + (1) 1. (%)

n-2
j denote the coefficient of A
in R,(A), and b; the coefficient of A in F()\). Then, from the definition of
R,(\)sa, =1, a,_, =-P,, a, = (DM "™2p and q, = (-1)"* /2,
The nth term in F()) is
(~1)* (=1)""2A2 = A",
so b, =1=aqa,.
The (n - 1)t term in F()) is
DA ENTTP D - 2, 13+ (CD(G, (0 ()72
= NP, () = Q1 (B)) = NP, (),

s0 b,y = Ay_q-

Let F()A) denote the right-hand side of (%), let a

n-1

The constant term of F()) is
(_l)n(_l)n—l(_l)(n—1)(n—2)/2 - (_1)(n+1)n/2’
so a, = bo.
For b,, we have
by = (DM (=, (0N (=D DD
+ (CDTEDPTTIENEDET D002 {1 - 20w - 3}
(-1 =72 () = P, _, (E))A
(-1 =D2p (1Y,

It

]

giving a; = b,.
For the remaining coefficients we need to show that, for 2 < k <n - 2,
a,_y = b,_ys that is,
(~DEHDR2 {0, k) = (1) (D" DR - o) )
+ (DD EDRED2 - o) k- 13-, (£))
+ DR EDTTREDEDEDR2 20, - 23 (-1

Clearing signs, this reduces to
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{n, k} = D*n - 2, K} + @, (&) {n - 2, k - 1}
+ D" - 2, k- 2], (55)

Factoring out {n - 2, k = 1} reduces (%%) to

P ()P (£
P, (0P, (£) ~

B () P, (B

_roRms _1\n+k
By T G )+ DT s

(-1)k
Thus, it suffices to show that for 2 < k <n - 2,
P, (£)P,_ (t) = P, (£)P,_,(£)Q, _, (¢)

— (_1)k _1\yn-k
(-D*B, (&P, _, (@) + (-1 P ()P, _ ().
This last identity is proven using the Binet formulas and the properties of o

and B. For convenience, denote Pn(t) by P, and so on. First,

PP, _, = (" = BM @t = BTN /(o - B)? =@, + (-1)"Q,,

and
Qn_lkan_k - (un—l + Bn—l)(OLn + B" - Bkoc”'k _ OLan_k)/(OL _ B)Z
- (GZH—I + an—l + (_l)ﬂ—l(B + OL)_ (_l)k(dz‘ﬂ—zk—l
+ 6271—27(—1) _ (_1)77—]((&27{—1 + sz—l))/<u _ 8)2
= (@1 T (_1)n—1Q1 + ("l)k+lQ2n—2k-1
+ (=)™, ) /(@ - B2
Then
PPy 1 - Pkpn—an—l

= ((-1D)%Q,, -1 + (C1"7FQ, L+ 2(-1)"@) /(@ - B)Z.

On the other side,
DXy 4 Pugy + DR P
(~D* @y gz + CDTFQ /(0 = B)?
+ (- @Q, o, + DR /(@ - B)?
(1K@, oy + D"7RQ 1+ 2(-1)"@) /(0 - B)Z.

i

Thus, the identity is true, and (%%) is true; that is, a,_, = b, , for all k,
2 <k<mn-2. Then R,()\) satisfies the recurrence and initial conditions of

Lemma 4.1, and it follows that R, (A) = C,(}). ®

5. THE EIGENVECTORS OF V

n

The eigenvectors of V, can be computed in a recursive way. The initial

cases are given below.

Lemma 5.1: 7V, has eigenvalues o, B. Eigenvectors v, and v, corresponding to

o and B are given by

o[ vl
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The matrix V, has eigenvalues -1, a®, 8% with corresponding eigenvectors

Vis V,, V, given by
1] 1 1
v, = T, v, = 2001, vy = 281, =
-1 o2 _SZJ
Lemma 5.2: Tet u = col(uys Uys 0.y 4,) and W = col{w,, Wy, ..., w,) be adja-

cent columns of V,, with u to the left of w. Then

tu, = W,
tu, +u, ., =W, (Z =1, 2, ..., n— 1).
Proof: 1If u is column J, then for 2 =1, 2, .., 7 = jJ - 1 we have u = 0 and

o/

tu, + v, =w,. If . =n -+ k for some k, 0 < k <, then

7

L I B AU (j - 1)4i - j),i -
tui by, L(i 1)J + r (i,t [
Since U, = ﬁj'l and w, = tj, we have tun =W . 8B

"

Lorollary 5.3: Define vectors X and ¥y by

X col(0, ..., 0O, Tys vees Ty 0, ..., 0)

N S—— [ S

J k
vy = col{0, ..., 0, Lys cwes T, 0, ..., O)
[ ——— 2 N —

J+1 k-1
where j + ¢ + k =»n and kK > 0. Put
us="vx and v =71y

with u = col(u,, «..s %) 2nd v = col{vy, ..., v,). Then tu; +u,, ,=v;.

Proof: Let e, denote the column vector with 1 in the K" place and 0 every-
where else. By Lemma 5.2, the result is true for
(Jg+2<mn),

X = &

i1 and Yy =&

J+2
and hence is true in general by linearity. B
Theorem 5.4: Let n > 1 be odd, so that V, has
g = (~1)n-D/2
as an eigenvalue. Let
Vo= col(Wy,s caes Uy)
be an eigenvector corresponding to €. Put
W= col(v,, +vo» Uys 0, 0)
+ col(0, tvy, o-us tv,s 0)

+ col(0, 0, Uy eens =0, ).
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Then w is an eigenvector for V,,,, corresponding to the eigenvalue

—¢ = (_1)(n+1)/2 .

Proof: Put w = w, + w, + w,, where the W, are the summands in the statement

of the Theorem. From the form of V, (it has V,_, in the lower left block, with

2
zeros above it), it is clear that

VypoW, = €0, 0, vys oovy D)

since v is an eigenvector for V, corresponding to €. Then by Corollary 5.3,

V, . W, = tel[ (0, Vs o5 U5 0) + £(0, 0, Vis vees v,)]
_ _ g2
Voo Wy = —elw, + 2w - 27w ]
o)
szw = s(—wl -w, - w3) = -EW. B
Theorem 5.5: Suppose that v = col(v,, ..., v, _;) is an eigenvector for V _,

corresponding to the eigenvalue a?¢ (Z =2 0). Put

W= col(®y «.., U, 1> 0) + 0col(0, vy, ..., V,) =X+ QY.
Then w is an eigenvector for V, corresponding to the eigenvalue attl.

Proof: We have

V,x = o’y

V,y = a'X + a‘ty
so that

vV, (x + oy) = at(y + ax + aty).

Since a? = 1 + at,

V. (x + ay) af(ox + a’y) = afti(x + ay)
as required. ®

Remark: The analogous result also holds for the eigenvectors corresponding to

the eigenvalues B*.

Corollary 5.6: All of the eigenvectors of ¥, can be computed in terms of the

eigenvectors of V, , and V, _,. ®

1 2
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