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1. Introduction 

Many problems lead to constant coefficient linear recurrences, mostly of 
the second order, for which explicit solutions are readily available. In some 
cases, howevers one is faced with the problem of solving nonconstant coeffi-
cient linear recurrences. Second- and higher-order linear recurrences with 
variable coefficients cannot always be solved in closed form. The methods 
available to deal with such cases are very limited. On the other hand, the 
theory of differential equations is richer in special formulas and techniques 
than the theory of difference equations. The lack of a simple "change of 
variable rule," that is, a formula analogous to the differential formula 

dy _ dy dt 
dx dt dx' 

in the calculus of finite differences, precludes most of these techniques to 
carry over when we attempt to solve a difference equation. 

Of course, in such cases, a step-by-step procedure, starting with the ini-
tial values, is always possible. And in many cases it may be the best 
approach, especially if one needs the value of the independent variable not far 
from its initial points. However, we frequently ask the question whether the 
solution may be written in closed form. 

When a certain class of second-order linear recurrences was studied, we 
arrived at a theorem not found anywhere in the literature and which is stated, 
after some preliminaries, in the next section. In Section 3 we give a proof of 
the theorem, and its consequences are examined. It is found that a whole class 
of second-order linear recurrences can be solved in closed form. Finally, an 
example is given where the theorem is applied. 

2. Preliminaries and a Theorem 

Let I - {..., -1, 0, 1, ...} be the set of all integers. The domain of the 
(complex-valued) functions defined in this paper will be subsets of I of the 
form IN = {N9 N + 1, N + 2, ...} where N e I (usually N = 0 or 1). We are 
going to consider linear recurrences written in operator form as 

E2y + aEy + by = 0 (1) 

where E is the shift operator, i.e., Ey - y (n + 1), a, b, and y are functions 
on IN and where b(n) * 0 for n £ IN. We will also use the notation 

•y" + ayf + by = 0 (2) 

where y! = Ey 9 yn = E2y, and so on, in order to stress the analogy between re-
currences and differential equations. 

First, we examine the constant coefficient second-order linear recurrences 

E2y + nEy + vy = 0 (3) 

where Greek letters will always stand for scalar quantities. 
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In the elementary exposition of the theory [1] we try solutions of the form 
y(n) = Xn for some as yet undetermined scalar X, and we are thus led to the 
notion of the characteristic polynomial associated with the given equation. In 
general 5 we are able to find two linearly independent solutions and hence the 
general solution. The question arises, however, as to why we try solutions of 
that particular form. In the more advanced exposition of the theory [3], 
linear recurrences are treated as a special case of first-order linear systems 
where the trial solutions y(n) ~ Xn appear naturally when we attempt to calcu-
late An where A is the matrix coefficient of the system. 

For the moment, we make the observation that when (3) is premultiplied by E 
we get 

E*(Ey) + vE(Ey) + v(Ey) = 0, (4) 

i.e., whenever y is a solution, Ey is also a solution of (3) and, furthermore, 
the assumption for the existence of solutions of the form y (n) = Xn is equiva-
lent to the statement Ey = Xy for some X. 

Next, take the less trivial case of the recurrence 

aE(aEy) + \iaEy + vy = 0 (5) 

where a{n) * 0 for n G IN. We try to solve (5) as a first-order recurrence (of 
the Riccati-type) in a. The substitution a = Eu/u leads to the constant coef-
ficient linear recurrence 

E2(uy) + ]iE(uy) + v(uy) = 0 , (6) 

which has solutions of the form u{n)y{n) = Xn or 

u{n + l)y(n + 1) = 
uin)y{n) 

i.e., aEy = Xy for some X. Note also that if (5) is premultiplied by E and 
then by a we get 

aE(aE(aEy)) + \iaE(aEy) + vaEy = 0, (7) 

i.e., whenever y is a solution, aEy is also a solution of (5). 

The above discussion suggests the following. 

Theorem: Let L and M be two linear (difference) operators and suppose that LMy 
= 0 whenever Ly = 0. Then there exists (at least) a solution y of Ly = 0 such 
that My = Xy for some X. 

3. Proof of the Theorem 

Let {y\> z/2' 'o*5 l/m^ D e a basis for the null space of L. Then Myi is also 
in the null space, i = 1, 2, . .., m and can be written as a linear combination 
of the basis, i.e., 

m 
MVi = E eikyk' i = 1, 2, .... m. (8) 

k = 1 
Form the matrix C = [c^] associated with the operator M and let u be an eigen-
vector of CT with associated eigenvalue X, i.e., CT\i = Xy. Now, let 

Then 

in 

y ' E ViMi-
i = l 

I m \ m m m 

My = M[ Z^yA = E Ui%* = E u; 5>; 

1989] 157 



ON SOME SECOND-ORDER LINEAR RECURRENCES 

m l m \ 

= E E U;C«W = *h> <9> 
fe=l \ £ = 1 / 

Now l e t 
L E E2 + aE + bl, (10) 

and 
M E pE + ql (11) 

where b(n)p(n)q(n) * 0 for n e IN and I is the identity operator. Since My = 
Xz/ can always be solved in closed form, the following problem arises: 

"Given a second-order linear operator L (10), find a first-order 
operator M (11) such that LMy = 0 whenever Ly = 0." 

Although it is not always possible to find such an M, we proceed to deal with 
the problem and find out what can be said about it. 

It is easy to see that 

LM = p"E3 + (q" + apf)E2 + (aqr + bp)E + bql 
and (12) 

ML = pE3 + (a'p + q)E2 + (6 fp + a^)^ + 6̂ J. 

Then 
pLM - p"ML = rL9 (13) 

provided that 

r = qp - qpn (14) 
and 

a'p" - ap' - q" + q = 0; (15) 
b'p" - Z?p - aqr + aq = 0. (16) 

Thus5 p and q must satisfy the second-order linear system (15) and (16). 
Note, however, that (15) can be "summed," since it can be written as 

A(ap') = A(A + 2I)q (17) 

where A = E - I is the difference operator. When (17) is premultiplied by A-1 

gives 

ap' = qT + q + c (18) 

where o is a constant. Elimination now of q from (16) and (18) gives 

abnpnt - a'(aa; - ̂ f)p" + a(aa' - b r)p r - a 'bp = 0, (19) 

which is a third-order linear recurrence in p. Solving (19) is a more diffi-
cult problem than the original one (10). Note, however, that ±t aa1 - bf

 9 (19) 
is only a two-term recurrence, which means that the recurrence 

y" + a'yr + aa'y = 0 (20) 

can be solved in closed form for any a. We can say something more. From (18) 
we have 

a = (qf + q + c)/pr, (21) 

and when the above expression is substituted in (16) we obtain 

b = (q2 + aq + d)/ppf (22) 

where d is a constant. We are, thus, led to the conclusion that the second-
order linear recurrences of the form 

PPry" + p(qf + q + v)y' + (q2 + ]iq + v)z/ = 0, (23) 
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where u, v are scalar quantities and p, q are arbitrary functions, can be solved 
in closed form. Finally, note that (20) is a special case of (23) , and when q 
is constant and p(n) == n in (23) we have the Euler-type difference equation 
[2]. 

As an application of the above discussion consider the recurrence 

Then 

y{n + 2) - 2(n + l)y(n + 1) + (n + -|j y(n) = 0. 

L E E2 - 2(n + l)E + In + |) J. 

(24) 

It is easy to see that 

L(E - nl)y - (E - nI)Ly = 0. 

Therefore, the theorem applies for (24) and, consequently, there is (at least) 
one solution of (24) among the solutions of 

(E - nl)y = \y9 

which are 

y{n) = A(X + 1)(X + 2) ... (A + n - 1). 

Substitution of y{n) into (24) gives 

o 1 1 
A2 - X + -r = 0 or A = 77. 4 z 

Therefore, one solution of (24) is 

yi(n) = \ { \ + l){\ + 2) ... (-| + n - l) or j/ (n) = r(| + n) , 

where r( » ) is the Gamma function. The other, linearly independent, solution 
yAri) can be found by the method of the reduction of order. 
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