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Let x denote a positive integer, written in the ordinary denary form, and 
define its palindromic inverse xT to be the integer obtained from x by writing 
its digits in reverse order. We ignore leading zeros so that both 1234 and 
12340 have palindromic inverse 4321. A number is called a palindrome if x = 
xf. Similar definitions apply to bases other than 10. 

A notorious problem concerns palindromic sums [3]. From any starting point 
Xi we form a sequence inductively by x^+i = Xy. + x£ , and the question is 
whether one always arrives at a palindrome. A negative answer is conjectured, 
and specifically that for Xi = 196 a palindrome is never reached. Although 
this problem is unsolved, the conjecture is known to be correct for base 2 [2]. 
The problem, however, is somewhat artificial since the property of being a 
palindrome will not persist throughout the iteration even if ever attained. We 
consider here the problem of taking palindromic differences; starting with X\, 
define 

xfe + l \xk ^kl 
inductively. In this case, if xk were a palindrome, all its successors would 
vanish, and the first question that arises is whether this always occurs. This 
problem has been considered previously (see [1], [4], [5]). 

Clearly, if X\ has only one digit, then x2 - 0, and if Xi has two digits, 
then x2 will have at most two digits and be divisible by 9. If x2 = 9 or 99, 
then # 3 = 0 , whereas all other cases do eventually reach zero, as the sequence 
90, 81, 63, 27, 45, 9, 0 shows, for this sequence together with all palindromic 
inverses contains all integers of no more than two digits divisible by 9. The 
same reasoning applies to three-digit numbers, for then x2 will be divisible by 
99, and the sequence 990, 891, 693, 297, 495, 99, 0 shows just as before that, 
for any Xi under 1000, the process leads to zero in the end. As we shall see 
presently, the close connection between the behavior for two- and three-digit 
numbers is not mere coincidence. 

Given an x± having n digits, it is not necessarily true that x2 < #]_> but 
certainly x2 has n or fewer digits. Accordingly, from any starting point Xi of 
digit length n one of two things must happen; either in the sequence of 
iterates we find one with fewer than n digits, which property will then per-
sist, or else the sequence becomes periodic eventually with all the numbers in 
the period having n digits. Within a period, the period-length p, is the 
number of iterations required to return to the starting point. We have already 
seen that there are no periods with 0 < n < 4. However, there is a period with 
n = 4, p = 2, with X\ = 2178, x2 = 6534. So there are nontrivial periods. We 
seek to determine for each n, all possible periods; alternately, we might 
desire to find all possible p. 

It is easily seen that p = 1 cannot occur except for Xi = 0, for it would 
require x2 = xl and so x{ = 7x^ . Suppose then that the first and last digits 
of xi were a and bs respectively. Then we should find that b = 2a or 2a + 1 and 
also that a = lb (mod 10), which cannot hold simultaneously. [Incidentally, it 
can be shown that if instead of base 10 we consider base 3 the same result 
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holds if 3 = 2 or if 3 = 1 (mod 3). However, in other cases, there are 
nontrivial periods with p = 1, e.g., x = ab with 

a = (3 - 2)/3, b = (23 - 1)73 if 3 = 2 (mod 3), 
and a; = a£c<i wi th 

a = 3 / 3 , fc = (3 - 3 ) / 3 , o = (23 - 3 ) / 3 , 6Z = 23/3 i f 3 = 0 (mod 3 ) . 
We shall, however, concentrate on the denary case in the sequel. 

We observed before a connection between the behavior of three-digit numbers 
and that of two-digit numbers, and we now use this to dispose of the case in 
which n is odd. Suppose that we have a period in which n = 2m + I is odd, and 
let xi = a§a\ ... &2m-la2m De anY number in any period with digit length n. 
Then x^ is the modulus of the difference 

^0 al m •• am ° • • a2m-laZm 
. am ... a-j_ aQ 

and since the two middle digits coincide, the middle digit of the difference 
will be 9 or 0 accordingly as there is or there is not a carry in the middle of 
the subtraction. Hence, for every number in such a period the middle digit 
will be 0 or 9, and moreover, were this digit to be removed in all cases, we 
should obtain a period with the same p but with n reduced by 1. Conversely, 
all periods with n odd can be obtained from exactly similar ones with n one 
less by the insertion of a suitable middle digit 0 or 9; thus, the period 2178, 
6534, 2178 leads to 21978, 65934, 21978. In fact, we can produce a period with 
n one larger still by doubling this middle digit and, of course, the process 
can be carried on indefinitely. We call a period old if it is derived in this 
way from one with smaller n, and we shall from now onward concentrate on 
finding the new periods; since all new periods have n even, we shall write n -
2m. 

Much of what follows was obtained by computation, and economy soon becomes 
a major consideration. At first sight, it might appear that to find all 
periods of digit length 2m it might be necessary to consider all 9 •' 102"7"1 
possible n-digit numbers and their iterates to find all possible periods. Such 
a procedure would be extremely wasteful, for all the integers in a period are 
themselves iterates, and there are far fewer of these. For suppose that x-^ -
CC^CL-, ... <2 •, and without loss of generality that x •, < x\. Then 

m- 1 

x2 = J2 Ar(lOn~r-1 - 1075), 
r = 0 

where Ar = an-T-\ - av . Since x2 has n digits (and not less), it is easily 
seen that this requires 

1 < AQ < 9 and -9 < AP < 9, r = 1, 2, ..., m - 1. 
Secondly, the observation that second iterates cannot have AQ = 9 reduces the 
number of cases to be considered to 8 °19;77~1. Despite this reduction and some 
other refinements, the number of cases still grows exponentially with n, which 
soon makes complete computation impossible. 

We shall represent the iterate xs a number of 2m digits, by the correspond-
ing ̂ fs in the canonical form U 0 , Ai, ..., Am„i] where it is to be understood 
that AQ lies between 1 and 8 and the others between -9 and 9. From this, the 
denary form for x is found by writing 

V l ••• Am-l ~A
m-l ••• ~Al ~AQ 

where, of course, some of the numbers will be negative. To deal with this, we 
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start at the right, and whenever we encounter a negative number add 10 to it 
and subtract 1 from its predecessor in the usual "borrow and carry" fashion, 
familiar from elementary arithmetic. The successor is then easily calculated 
in the same canonical form and the process repeated, in a manner eminently 
suitable for computation,, 

It will be clear that if Am-i = 0, then in the denary form the number will 
have its two middle digits both 0 or both 9, and its successor will also have 
Am-i = 0; such a number cannot appear in a new period, and so can be ignored in 
a search for new periods. At first this appears to produce only a small saving 
in the computation, a factor of 18/19, but this is not so, for we can ignore 
any Xi any of whose iterates has Am_i = 0, and this observation saves a very 
large proportion of the time required to compute the periods. 

Since we now assume that Am_i * 0, we can associate with each number x of 
digit length 2m in a new period, the rational number u... •= XI Ar * 19~p whose 
denominator is precise ly 19m~1, and conversely, each such u yields a unique x. 
Within each period we call that x the first in the period if the corresponding 
u is the least u of any x in the period. It clearly suffices to find all the 
first numbers in the periods. 

For any r with 0 < r < m - Is we write 

X -i — 1 / L Q , /i-i, ..., rl-p 9 i J 

or 
*^i "" fl5 l ' ' ' '' ^ ' 

according as the first nonvanishing integer in the sequence Ar + i9 . ..,. 4m-i is 
positive or negative. The utility of this lies in the fact that if 

x2 = iB0,'Bl9 . . . , Bm_l}, 

then BQ9'BI, . . . , Bv depend only upon AQ , A\y ..., AT and the value + or - and 
not on the actual values of ̂ 4P+i5 . ..» A-m-l* Using this fact, we see that no 
period contains any element {5, + } , for the successor would have BQ = 0. 
Furthermore, no period has {4, +} as its first element, for the successor would 
have BQ = 2, contradicting the assumption that {4, +} came first in the period. 
In this way, we can write a program to determine whether anv period could start 
with (AQ9 AI> ..., Ar, e), where s = + or -, for we can calculate the first r + 
1 digits in the canonical form of its successor, then there would be two 
possible second successors, four possible third successors, and so on. At each 
stage, we can delete any suggested successor which comes before Xi and so 
determine whether we could eventually return to X]_, and if so what is the 
minimum possible period. For r - 0, it is possible to show on the back of an 
envelope that, for the first element of any period AQ = 1 or. 2. For r = 2, 
about 3 minutes on a simple home computer suffice to prove 

Result 1: The only period with m = 2 starts at {2, 2} corresponding to 2178, 
and for m > 2, every new period must start at one of 

{1, 0, +}, {1, 1, ±}, {1, 2, ±}9 {1, 3, ±}, {2, -9, ±}, {2, -8, +}, 

{2, -6, ±}, {2, -5, ±}, {2, -3, - } , {2, 0',.'-}, or {2, 2, - } . 

The same program showed that the only periods with p = 2 are {2, 2} and 
possibly more starting at {2, 2, - }. Use of this fact allows us to find all 
periods with p = 2. Let a (jn) denote the number of periods both old and new 
with p = 2 and n = 2m. One such is, of course, {2, 2, 0, 0, ..., 0}, but this 
apart, we must have X\ = {2, 2, -} and so x2 = (6, 6, . . .}. If 

x2 = (6, 6, +} or {6, 6, 0, 0, ..., 0}, 

then 
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x3 = {2, 3, ±} or {2, 2, 0, 0, ..., 0}, 

respectively, and in either case x? * x-,. Thus, 

x2 = {6, 6, - } . 

Now consider the number 2199 ... 9978 - Xi. It is easily seen that for some 
k > 2 this number has its first k digits zero, its last k digits zero, and a 
number y, which occupies the middle 2m - 2k digits; then 

xx = {2, 2, 0, ..,, 0, Ak9 ..., Am_1} 

with Ak < 0. Then 

2/1 = i-Ak> •••> - V i > -
Also, z/-, < z/|, otherwise we should not have a?2 = {6, 6, -} and, moreover, y, 
must also be periodic with period dividing 2, and hence equal to 2. Therefore, 
2/-,= {2, 2, ...}, etc. Conversely, given such a y, we can find a corresponding 
#2 of digit length 2m. Hence, 

o(m) = 1 + a(l) + ... + a(777 - 2) 
and so 

o(m + 1) = a (777) + a (77? - 1). 

Since a(l) = 0 and a(2) = 1, it follows that a(m + 1) = Fm, the 777th Fibonacci 
number. Also, the number of old periods with p = 2 and of digit length 27?? 
equals o(m - 1); hence, for m > 3, the number of new periods of digit length 
2777 equals Fm_x - Fm_2 = Fm_3.-

We show next that all periods starting at {2, 2, -} have p = 2. For, let 
x-, be the first element in the period; then x2 - {6, 6, ± }. We cannot have 
x2 ~ (6, 6, +}, otherwise x^ = {2, 3, ±} or {2, 4, ± }, whence x^= {2, -} 
—impossible, since x-, was assumed to be the first in the period. Thus, 

x2 = {6, 6, -} and x^ = {2, 2, ±}. 

Again the + sign is impossible, since it would be found that x^ came before x,. 
Thus, we find that, for all k9 

x2k+l = {2, 2, -} and .x2k = (6, 6, -} 

and, accordingly, p must be even. If we now subtract x, from 2199 ... 9978, we 
find that after deleting leading and trailing zeros we obtain either zero or 
else a number z/1 which also forms part of a periodic sequence with the 
properties that, for each k9 

yzk+i < yk+i a n d yzk > yk-
It is not very difficult to establish that these conditions also require y•, to 
start {2, 2, ±}; we omit the details. Hence, all periods starting at {2, 2, -} 
are obtained by the construction above; thus, by induction on 77?, all have 
period 2. Summing up, we have 

Result 2: Every period with p = 2 starts with {2, 2, ...} and conversely. For 
given digit-length 2T?? where m > 3, there are precisely Fm-\ such distinct 
periods of which precisely Fm_3 are new periods, Fk denoting the 777th Fibonacci 
number. 

For other values of p, there does not seem to be such a neat description. 
We have carried out a complete search for 777 < 8 and obtained the following 
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Result 3: 

m 

2 

3 

4 

5 

6 

7 

8 

For m < 8. 

P 

2 

2 

2 
2 
14 

2 
2 
2 
14 

•2 

2 
2 
2 
2 
12 
14 
22 

2 
12 
14 
22 

2 
12 
14 
14 
17 
22 

, the only periods 

First X-, 

2178 

219978 

21999978 
21782178 
11436678 

2199999978 
2178002178 
2197821978 
1143996678 

219999999978 
217800002178 
217821782178 
219780021978 
219978219978 
118722683079 
114399996678 
125520874479 

eight periods 
one old period 
one old period 
one old period 

thirteen periods 
one old period 
one old period 

1143667811436678 
1186781188132188 
one old period 

are: 

Canonical Form 

2, 

23 

2, 
2, 
2, 

25 

2, 
2, 
2, 

2, 
2, 
2, 
2, 
2, 
1, 
2, 
1, 

2, 
2, 

2 

2, 

2, 
2, 

-8, 

2, 
2, 
2, 

-8, 

2, 
2, 
2, 
2, 
2, 
2, 

-8, 
2, 

-8, 
-9, 

0 

0, 
-2, 
-6, 

0, 
-2, 
0, 

-6, 

0, 
-2, 
-2, 
0, 
05 

-1, 
-6, 
5, 

-6, 
9, 

0 
-2 
4 

0, 
-2, 
-2, 
4, 

0, 
-2, 
-2, 
-2, 
0, 

-3, 
-4, 
5, 

4, 
-3, 

0 
0 
-2 
0 

0, 
0, 
• 2, 
-2, 
-2, 
2, 
0, 
2, 

-4, 
-3, 

0 
0 
2 
0 
-2 
3 
0 
1 

6, 
9, 

8, -2 
-9, 2 

It will be observed in the above that certain of the canonical forms of new 
periods read the same left to right as right to left, e.g., {2, 2} and {1, 2, 
5, 5,. 2, 1} and that others do so with a change of sign, e.g., {2, 2, -2, -2}. 
Consider any x = {AQS ..., /lm_]_} in which Am_i * 0 and define the dual of x, z 
= {CQ, ..., Cm-i} where the A's have been written down back to front and the 
signs changed throughout if Am„i < 0; formally 

Cr = sgnl^^} • Am-r„i, 0 < v < m - 1. 

Clearly, performing the operation twice will yield x again, justifying the name 
"dual." There is one difficulty that arises, for if Am-i = ±1 and Am-2

 n a s 

opposite sign to Am_i, then z = {1, -} and on expansion this fails to have 2m 
digits. We shall deal with this as it occurs. The utility of the definition 
lies in the following 

Lemma: The iterate of the dual equals the dual of the iterate. 

Proof; There are two cases depending on the sign of Am_i. We give the proof 
for Am_i < 0, the other case being less transparent but essentially similar. 
If x = {AQ, . .., Am_i} s then z = {-Am_i, ..., -A 0 }. Thus, to find the denary 
representation for x9 we have to perform the "borrow and carry" routine on the 
expression 
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A0A1 ... Am_l{-Am_1) ... (-A^i-Ao), 
whereas for z we must do the same for 

(-Vx) ••• (-^K-VVl ... 4m_i-
Now observing that both AQ an<^ ~^m-l a r e positive, and the fact that the "first 
half" of the former expression is identical to the "second half" of the latter 
and vice-versa, it becomes clear that this property remains intact after the 
borrowing and carrying; recalling how the iterate is formed from the denary 
form proves the result. 

Now consider any new period which guarantees that Am_^ ^ 0 for every x in 
the period. At first sight, the lemma would appear to give a new dual period, 
obtained by taking duals throughout. There are, however, three reasons why 
this need not be. In the first place, we might have a period in which x-, is 
its own dual, and then by the lemma this property would persist throughout the 
period. Thus, the dual period does indeed exist, but is identical to the given 
one. This case can be further subdivided into two cases. If x •, is its own 
dual, then we have either Ar = Am_r_i for each r, in which case we call x-^ 
symmetric, or else Ar = -Am-T„i for each p, in which case xi is said to be 
skew-symmetric. It is not difficult to see that the property of being 
symmetric or skew-symmetric also persists throughout the iterations and so we 
also call the respective periods symmetric or skew-symmetric. Both types do 
exist, as we see in Result 3. The symmetric cases are interesting, and can 
occur not only if m is even but also with m odd. The skew-symmetric cases, 
however, are all formed from periods with fewer digits in the following manner. 
Let 

xl = ^ 0 ' * ' " ' ^ - 1 ^ 
be the first member of any period whatsoever. Then we can obtain a skew-
symmetric period with the same p starting at 

yl = {AQ9 ..., Am_1, 0, ..., 0, -Am_1, ..., -AQ} 

where the number of zeros written in the middle is arbitrary and can be zero; 
conversely, any skew-symmetric period is of this form. The symmetric case is 
entirely different, and although {1, 2, 5, 5, 2, 1} belongs to a period, 
neither {1, 2, 5} nor {1, 2, 5, 0, 5, 2, 1} does. 

A second reason why the dual period may not be interesting is that although 
X, may not be self-dual, it may be the dual of one of its iterates. Thus, if 

xl = {2, -8, -6, 4} 
then 

ooQ = (4, -6, -8, 2}. 

In such cases it is reasonable to call the period self-dual although the 
elements themselves are not. It is plain that for all self-dual periods p must 
be even. 

There is a third reason why the dual period may not yield anything inter-
esting. It is possible that one x in a period is of the form we mentioned 
above with Am_l = ±1 and Am_2 °f opposite sign to Am-i, in which case the dual 
"collapses," in not having the requisite number of digits. This does indeed 
occur; one example, which may well not be simplest, is the one given in Result 
4 below for p = 9. It has 

^3 = (4, 3, 4, 7, 0, -3, 9, 1, -6, 2, 2, 3, 2, 6, 7, -9, 6, 
8, -4, 1, -4, 9, -2, 1}. 

There are some divisibility properties of the x which can occur in a 
period. Naturally, all are multiples of 9, but the observant reader may have 
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noticed that all the x-, with 777 < 8, and indeed all those for n < 17, including 
those with n odd are multiples of 11. If n = 2m + 1 is odd, then any iterate 
is a multiple of 11 since, if x^ = a^a^ •-• ^2 » then 

±*2 - ]£ (ar - a2/n_p)(102ffl-r - 10r) = 0 (mod 11). 
r = 0 

If n = 2m is even and x = aQa-> . .. a~ _i» then 

2m -v 
xl + *{ = X (aP + a2m.1.p)(102m"1"r + 10r) E 0 (mod 11), 

v= 0 
and so 

#2 = \x^ - #{I = ±2^1 (mod 11). 
Hence, 2^ and x2 are either both divisible by 11 or neither is. Therefore, in 
any period either all or none of the numbers are multiples of 11. Let us 
consider how we might hope to discover periods consisting of nonmultiples of 
11. In the first place, if x^ = {AQ, -..J Am_l}s then 

m - 1 - m--1 
xi = E'^ r ( io 2 , "" r - 1 - ioP) E 2 E ( - i > r " 1 ^ r (mod 1 ] - )-

2? = 0 r = 0 

Thus, if x1 is symmetric and m even, then 11107̂ . Similarly, if X\ is skew-sym-
metric and m odd, but this case is not really interesting, because whatever the 
parity of m, the property of being divisible by 11 or not is inherited from the 
shorter period from which X\ can be formed. 

We have seen that x2 = ±2x^ (mod 11) and so, if x, is not divisible by 11, 
then 

xl = xv+l E • ± ^ x \ (m°d 11) 

which implies that 

2P = ±1 (mod 11), 

i.e., that 5 divides p. It is not too difficult to show that p = 5 will not 
yield such a value, for if p = 5 it can be shown that 

xl = x6 E 25^i ~ ~x\ (m0(i 11)-
So in the search for possible periods not divisible by 11, it seems natural to 
look for numbers with period 10, which are not symmetric with m even nor skew-
symmetric. In this way we have been able to find such a period, which is the 
one listed in Result 4 below; it is self-dual. 

From the computational point of view, the existence of such numbers is 
rather a pity, for had we been able to show that all periods were divisible by 
11, the necessary computation to exhaust all possibilities for a given n could 
have been reduced by a factor of 11. 

The next question is, determine for which p periods exist. We have seen 
that there are none with p = 1, but some with p = 2, 10, 12, 14, 17, and 22. 
There is in principle no difficulty, given a suggested p, to search for periods 
in a systematic way. Suppose that we have reason to think that there might be 
a period starting at x\ = {A Q , ..., Av , ± } of period-length p. Then, as 
mentioned above, we can calculate the 2 P~ 1 possible pth successors of x\ and 
check whether any one can be {^Q , . . . , Ar , ±}. If not, we can discard this 
starting point; if yes, then we can increase r by one and look at the 19 
possible starting points with the first v + 1 entries and the sign given, etc., 
inductively. Although the task sounds quite formidable, it is actually very 
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efficient at least for small p, apparently more so than a complete search for a 
given m. In this way, we have been able to show 

Result 4: For p < 14, there are no periods with p = 1, 3, 6, or 13. For the 
other ten values of p, one example each is provided by: 

p Canonical form for x, 

2 {2, 2} 
4 {2, -3, 0, -9, 5, -9, 0, -3, 2} 

5 {1, 0, 5, 9, 1, 3, -4, 6, 6, -4, 3, 1, 9, 5, 0, 1} 
7 {2, -6, 2, 8, -9, 1, -7, 5, 4, 3, 5, 3, 4, 5, -7, 1, 

-9, 8, 2, -6, 2} 

8 {2,-3, 0, -9, 5, -9, -2, 0, -5, 0, 4, 1, 8, 2, -2, 
-1, 7, 1, -4, -6, -7, -3} 

9 {2, -8, -8, -4, 0, 3, 5, 2, -1, -3, 2, 2, -8, -4, 6, 
-1, 6, 0, 3, 7, 3, 0, 3, -3} 

10 {1, 0, 6, -7, 0, -7, -8, 6, -6, -8, 1, 1} 
11 {2, -3, -4, 5, -7, -3, 5, 5, -6, 5, -1, 3, -5, -5, 3, 

-1, 5, -6, 5, 5, -3, -7, 5, -4, -3, 2} 

12 {1, 2, -1, -3, 2, 3} 
14 {2, -8, -6, 4} 

The author wishes to thank the referee for providing some references. 
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