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1. Introduction

Let S = {zy, 3, ..., xy} be an ordered set of distinct positive integers.

The nxn matrix [§] = (s;;), where S5 = (s> x;), the greatest common divisor
of x; and x;, is called the greatest common divisor (GCD) matrix on S. The
study of GCD matrices was initiated dimn [1]. In that paper, the authors

obtained a structure theorem for GCD matrices and showed that each is positive
definite, and hence nonsingular. A corollary of these results yielded a proof
that, if § is factor-closed, then the determinant of S5, det[S], is equal to
¢(xy)¢(xy) ... ¢(x,), where ¢(x) is Euler's totient. The set S is said to be
factor-closed (FC) if all positive factors of any member of S belong to §.

In [4], Z. Li used the structure in [1] to compute a formula for the deter-
minant of an arbitrary GCD matrix.

In this paper, we define a natural analog of the GCD matrix on S. Let
{{s}] = (tij) be the nx»n matrix with tij = [x;, xj], the least common multiple
of x; and ;. We shall obtain a structure theorem for [[S]] and show that it
is mnonsingular, but never positive definite. As it turns out, the matrix
factorization of [[S]] emerges from the structure of the related reciprocal
GCD matrix 1/[S], the <, j-entry of which is 1/(%; ;). Reciprocal GCD
matrices are addressed in the next section.

2. Reciprocal GCD Matrices

Definition 1: Let S = {xy, 23, ..., &,} be an ordered set of distinct positive
integers. The matrix 1/[S] is the nx#xn matrix whose %, j-entry is 1/(x;, x;).
We call 1/[S8] the reciprocal GCD matrix on S.

Clearly reciprocal GCD matrices are symmetric. Furthermore, rearrangements
of the elements of § yield similar matrices. Hence, as in [1] and [2], we may
always assume X] < Ty < ... < Xy,

We shall show that each reciprocal GCD matrix can be written as a product
of 4 and AT, the transpose of 4, for some matrix A4 with complex number entries.
In what follows, we let u{(m) denote the Moebius function
1 if n=1
um) = < (=17 if n = PiPy---Pp» distinct prime factors
0 otherwise.

The lower-case letter "p" will always denote a positive prime.

Definition 2: 1f n is a positive integer, we denote by g(n) the sum

g(n) =% s e ule).

eln
We observe that g(n) = F(m)A(n), where £(n) = 1/n and h(n) = 2ugjne- u(e).
Since f and % are multiplicative functions, g is multiplicative. Furthermore,
if p is a prime, A(p™ = 1 - p. Hence, g(p™ = (1 - p)/p™. It follows that

gm) =1 a-» - 20 I o).
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Moreover, by the Moebius Inversion Formula {see, e.g., [5]), it is true that

fny =1/n= 3% gle).

eln
These results are summarized in the following lemma.

Lemma 1: Let n be a positive integer. Then g(n) =1 if n = 1, and

gn) = % Iia- p) if n > 1.
Moreover, pln

I/n =% ge)y. [

eln
It is clear that any set of positive integers is contained in an (minimal)
FC set. We obtain the following structure theorem for reciprocal GCD matrices.

Theorem 1: Let S = {xy, %, ..., ®,} be ordered by %} < &3 < ... < z,. Then
the reciprocal GCD matrix 1/[S] is the product of an #n xm complex matrix 4 and
the m x n matrix AT, where the nonzero entries of 4 are of the form Vg(d) for
some d in an FC set that contains 5.

Proof: Suppose F = {dy, dy, ..., dp} is an FC set containing S. Let the complex
matrix 4 = (a;;) be defined as follows:
vg(d;) 1if d; divides x,,
4ij = 0 otherwise.
Then m
4D = Tagap = 2 Vgld) - Vg(dy) = 2 9l =
k=1 dil @ dy [z, = 5) 2 g
J
since F is factor-closed. Thus, 1/{S} = 447 . 0

Remark 1: Some of the entries Yg(d;) of 4 in Theorem 1 may be imaginary com-
plex numbers. A real matrix factorization for 1/[5] could be obtained by
defining B = (b;;) via

{g(dj) if d; divides «;,
i =

0 otherwise.

Then, if ¢ is the incidence matrix corresponding to B, it is true that 1/[S] =
B.CT

Corollary 1: Let S be an FC set. Then
det(1/[S]) = g(xpig(xo) .. glx,).

Proof: In Theorem 1, take F = S5; then 4 and AT are lower triangular and upper
triangular, respectively. So

det (1/[5]) = det(4) « det(4T)
(det (A))? = g(xpglxy) .. glz,). O

I

Remark 2: The set F in Theorem 1 may be chosen so that dy =21, dy = Xos «ues
dn = %,. Hence 4 = [Ay,4,], where Ai1s an mxn lower triangular matrix of the
form
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Vg(xy) 0
Vg (xy)
* T Vg (z,)

Therefore, rank (4) = n. However, since 4 has nonreal entries, we cannot con-
clude that 44T is nonsingular.

Remark 3: Unlike GCD matrices, reciprocal GCD matrices are never positive def-
inite. Recall that the 4AT factorization in Theorem 1 is a complex matrix
product, whereas, in [1], A is real. The fact that a reciprocal GCD matrix is
not positive definite follows readily from the observation that its leading
principal 2 x2 minor

1 1
X1y (X1, xp)?

is negative.

Remark 4: As in [4], a sum formula for the determinant of an arbitrary recip-—
rocal GCD matrix may be obtained from the Cauchy-Binet Formula (see, e.g., [3])
and the factorization 44”'. We omit this formula due to its length.

3. LCM Matrices

Definition 3: Let S = {x;, x5, ..., X,} be an ordered set of distinct positive
integers. The nxn matrix [[S]] = (£;;), where ti; = [z, xj], the least com-
mon multiple of x; and x;, is called the least common multiple [LCM] matrix on
5.
The structure and determinants of LCM matrices come directly from results
on reciprocal GCD matrices, since
XX
(o, ;] = ——1—.
(x; x;)
1f [[S]] is an LCM matrix, we may factor out x; from Row < and x; from Col-
umn J to obtain 1/[S]. Hence, every LCM matrix results from performing ele-
mentary row and column operations on the corresponding reciprocal GCD matrix.
The following theorem is a direct consequence of the preceding remarks.

Theorem 2: Let S = {xy, %3, ..., x,} be ordered by x; < x, < --- < x,, and let
A be the nxn matrix in Theorem 1. Then

[[S1] = D <447« D = D «»(1/[S]) « D,

where D is the nxn diagonal matrix diag(xy, %o, ..., %,). [

Corollary 2: An LCM matrix is not positive definite. [
Corollary 3: If S is an FC set, then .
det[[S]1] = 2 ... 22« g(xy) ... glx) = ]I [qJ(xi) - 1 f—p)}- 0

=1 p’xi
As before, the Cauchy-Binet formula may be used to obtain a sum formula for
det[[S]], S arbitrary.

Remark 5: We know from Corollary 3 that det[[S]] # O when § is FC. A natural
question arises: When is det[[S]] zero? For instance, when S = {1, 2, 15, 42},
det[[S]] = 0. Furthermore, when is det[[S]] positive? This does not depend
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entirely upon the parity of n, even in the factor-closed case. For example,
when S = {1, 2, 4, 8}, det[[S]] < 0, but when S = {1, 2, 3, 6}, det[[S]] > O.
In view of these comments, we leave the following as a problem.

Problem: For which sets S is det[[S]] positive? For which FC sets S is det[[S]]
positive? For which sets S is det[[S]] = 07?
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