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The equation
[e[ne + 1/2]1 + 1/2] = [nx + 1/2] + n

determines a unique real number x, in the sense that there is only one value of
x for which this equation holds for all positive integers n. This special
value of x is the golden mean, (1 + /g)/Z.

The purpose of this note is to prove the above assertion in the more gen-—
eral form of Theorem 1 (of which it is the case when ¢ = b = 1), and to give a
necessary and sufficient condition that iterates of the function [an + 1/2], in
the sense of Theorem 2, form a second-order recurrence sequence.

Notation: Throughout, let f(x) = 22 - axr - b, where ¢ and b are nonzero inte-
gers satisfying a2 + 4b > 0. Write the roots of f(x) as

a = (a+ Va2 + 4b)/2 and B =a - a.

Let [ag, aj, ap, ...] denote the continued fraction of the root o, with conver-
gents pk/qk given in the usual way (e.g., Roberts [l], pp. 97-100) by

p., =0, p_qy =1, P, = %DPr-1 + py_, for k >0,

9.5 =1, g1 =0, qy =1, g = @Gy + G_p for k 2 1.

Lemma 1: |g| < 1 if and only if |b - 1| < |a|, and
|8] = 1 if and only if |b - 1| = |a].

Proof: |B| <1 if and only if
(1) a-2<Vva2 + 4b <a+ 2,

with equality if and only if |B| = 1. This inequality shows that a cannot be
less than or equal to -2, since a? + 4b is positive. Moreover, if g = -1, then
b > 1, so that va2 + 4b > a + 2, a contradiction. Therefore, a = 1. In case
a =1, we have

(2) 2 —a < Va2 + 4b < a+ 2,

and if a 2 2, then the leftmost member of inequality (1) is nonnegative. So,
if a = 1, square the members of inequality (2), and if g > 2, square those of
inequality (1). 1In both cases, the resulting inequalities easily simplify to
-a<b-1¢<a.

Lemma 2: There exists a positive integer X such that
[(pk - aq, - 1)(pk - 1)/qk + 1/2] < bq,

< [(pk - aq, + 1)(pk + l)/qk + 1/2]
for all k = K.

Proof: It suffices to prove for all large enough k the inequalities

(p, —aq, - (p, - /q, +1/2 < bg, + 1

and
bq, < (p, = aq, + D(p, + D/q, - 1/2,

which are equivalent to
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3 [(p, - D/q 1% + alq, < ap/q, + b+ 1/2q, < [(p, + 1)/q, 1% - alq,.
Substitute o + e for p,/q,, where |el < 1/q39x+1 (e.g., Roberts [1], p. 100),
square where indicated, and use the fact that a2 - gao - b = 0 to see that (3)

is equivalent to
|€qk(a - 20 - €) +1/2 - l/qk| < ]a - 20 - 25[,

which holds for all large enough k, since, as kK » «, the left member approaches
1/2, while the right approaches |a - 2u| = Va2 + 4b > 1.

Lemma 3: If |b - l| < ’a(, then equation (4) below holds for x = a and for all
n = 1.

Proof: By Lemma 1, |B8] <1, so that the fractional part r = na+1/2- [na + 1/2]
satisfies |r - 1/2| < 1/2|B[. Since B = a - a, we have -1< (o - a)(1 - 2r) <1,
so that 0<(a - a + 1)/2 + (a - a)r <1. Since a2 = gqa + b, we then have

0 < (¢ -a)(mo + 1/2 - ») +1/2 - bn < 1,
or
bn < (o - a)[na + 1/2] + 1/2 < 1 + bn,

so that equation (4) holds for x = a.

Theorem 1: Suppose a and b are integers satisfying ib - ll < |a|l . Then there
exists one and only one number x for which

(4) [x[ne + 1/2]1 + 1/2] = a[nx + 1/2] + bn
for all n = 1. Explicitly, = o = (a + Va2 + 4b)/2.

Proof: Let n be the denominator g, of the k' convergent p,/q, to the root o of
22 - qxr - b. We shall show that in order for (4) to hold for this choice of n,
the number % must lie inside infinitely many intervals ([;, Fy), where

L, = (pk - l)/qk and R, = (pk + 1)/qk.

To see that x > L; for all large enough k, observe that, for x < [, and all
large enough k, we have

[x[nxe + 1/2] + 1/2 - a[ne + 1/2]] = [(x - a)[nx + 1/2] + 1/2]
< [((p, - D/gy - a)lp, - 1+ 1/2] + 1/2]
< [py - aqy = D(p, = D/q, + 1/2] < bgy.,

by Lemma 2. This contradiction to (4) shows that x = Lj for all large enough
k. Similarly, Lemma 2 shows that x < R; for all large k. It follows that the
only viable candidate for x is a, since only this number lies inside infinitely
many of the intervals (Ly, Ry).

Lemma 3 shows that the root o does indeed satisfy (4) for all n > 1.
Theorem 2: For any positive integer 7, the sequence {s;} given by
81 = N, 82 = [om + 1/2], S3 = [0632 + 1/2], cees Sy T [OtSk_]_ + ]./2]

satisfies the recurrence relation s; = asy-; + bsy- for all n = 1 and for all
k > 2 if and only if |b - 1| < |a].

Proof; 1f |b - 1| < |al, then 83 = as, + bs;, according to (4). In fact, for
any k > 3, substituting sy-, for » into (4) yields [asy + 1/2] = asx-; + bsx-2,
as asserted.

Now, if b - 1 = a, then a = a + 1, so that

s, =(a+ 1)n and s3 = (a+ 1)sy, = (a+ 1)%n = as, + bs;.
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By induction,

\
w

s, = (a+ )X ln = asy_y + bsy_p for all k 2
Similarly, if b - 1 = -a, then
s, = (@ - D¥n =asy 1 + bsy_, for all k = 3.

If lb - l| > ]al, then IB[ > 1 by Lemma 1. Then the well-known representa-
tion ajo™ + b1B™ for the mth term of any recurrence sequence

t, =at,_; + bt _,>
for which a2 + 4b > 0, shows that the sequence
at, = ty.q = b18" (0 = B)
diverges, so that the relation tm+l = [atm + 1/2] cannot hold for all m.
In conclusion, we note that the well-known representation
F, = [aF,_1 + 1/2]

for the nth Fibonacci number in terms of the golden mean, o, and only one pre-
ceding term, follows from Theorem 2 when a = b = 1. Theorem 2 reveals many

other second-order recurrence sequences which lend themselves to this sort of
first-order recurrence.
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