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INTRODUCTION

Fibonacci numbers, like factorials, are not naturally defined for
any values exceptinteger values. However the gamma function extends
the concept of factorialto numbers thatare not integers. Thus we find
that (1/2)! = /7/2. This article develops a function which will give
Fn for any integer n but which will furthermore give Fu for any
rational number u. The article also defines a quantity nA™ and de-

velops a function f(x,y) = Xﬁy where x and y need not be integers,

(1) DEFINITIONS

Let nA° = 1 (Definitions (1) hold for all n ¢ N)

Let
. n n
n./,?(1 (read 'm cardinal') = X kﬁo =3 1l=n
k=1 k=1
This gives the cardinal numbers 1, 2, 3, ...
Let n n
nAZ (read ''n triangular') = I kﬁl =% k
k=1 k=1
This gives the triangular numbers 1, 3, 6, 10,
Let n
nﬁa (read "n tetrahedral') = % kAZ
k=1

This gives the tetrahedral numbers 1, 4, 10, 20,

In general, let

n
nﬁm (read '"n delta-slash m') = z kAm_l
k=1
147
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This gives a figurate number series which can be assigned to the
m-dimensional analog of the tetrahedron (which is the 3-dimensional
analog of the triangle, etc.).

Let us construct an array (ai’ .}, where we assign to each a.

i,
an appropriate coefficient of Pascal's triangle.

1 11 1 1
1 2 3 4 5

(0 ) = 1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

It is clear that in this arrangement the usual rule for forming Pascal's

triangle is just

= +
(2) %, 7 M,5-1 7 Y-l

Buta comparison ofthis rule withthe definitions (1) shows that Pascal's

triangle can be written:
14

. S

1A

Y SV Y CHNE Y o
Y Y oY G o

where a; j = iAJnl. From the symmetry of Pascal's triangle,

a. .= a. .. Therefore
(3) W7 = W o™ = (g™

Pascal's triangle is a well-known generator of Fibonacci numbers in

the way shown in the following diagram.
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/ /

1 1 1 1:1:F1
2 |

6

3

2 = =
/1/ 4 5 o 1=1=F,

I3

J/ 1/3 10 15 ... 141 =2=F,
/1/4 10 20 35 ... 142=3=F,
/1 5 15 35 70 ... 14341 = 5 = F

We can apply the same course to our abstracted Pascal's triangle.

/ F1=14X0
425/ FZ:24XO
341(0/3¢g1 F, =340+ 140

e F, =480 + 24

SO

It is clear that, if we keep forming Fibonacci numbers from Pascal's

triangleinthisway, F_ = nAO + (n-2) ! + (11—4)A2 +... + (n—Zm)Am, or
g ¥, B

m
(4) F = % (n-20f
k=0

where we require that m be an integer and that 0 < n-Z2Zm £ 2, or in

other words that n/2 - 1 < m < n/2. Now let us prove

(5) Theorem 1 nf™ = n+2-1>

Proof: It is sufficient toperform induction on n. Let thetheorem be
E(n). Then if n =1, E(1l) states

<n+m—l) B <l+m—l> - ome
m - m T m! ’
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But by definition (1), (m+l)4(0 =1 for any (m+l) ¢ N. Then by equa-
tion (3) 147 =1 for m=0, 1, 2, 3, ... and E(l) is true. Now

let us assume that, for arbitrary m ¢ N, E(n) is true. Then

nAm - (n-l-m-l)

m

From the definitions (1) it can be seen that

- SR oo

Therefore the induction hypothesis can be restated

m-1 m-1 ntm-2) _ /nt+m-1
(6) 14 + 24 +...+< m_l)_< ™ )
Add (n:n“_‘Il) to both sides of equation (6) to obtain
m-1 m-1 n+tm-2 ntm-1
(7) 14 + 2/ S +( o )+ A
(n+m-1> <n+rn—l>»
= +
m m-1
n+m

The right-hand side of equation (7) is {( m ) by the standard identity

for combinations, so we have

m-1 m-1 (n+m—2) <n+m~1 _(n+m)
1A + 24 LEEEER A G m_l)~ ™ ,
or

lAm—l . 2‘ﬁm—-l I n:’nrr_IIZ>+ ((n+in-_hin-2>

_ ((n+1)+m—l> ’

m

which is E(n+l). Therefore E(n) implies E(n+l) and Theorem 1 is

true by mathematical induction.

Now let us prove

1
(8) Theorem 2 nf™ = [(n+m)f xn‘l(l_x)mdx]’l
0
Proof: r(n)= (n-1). (gamma function)
rim)r{n)

B(m,n) = B(n,m) = F{min) (beta function)
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Therefore
1 _ TI'(m+n)
B(m,n) = T(m)T(n) ’
and
L - T(n+2) _ (nH1)!
B(m+l, n-m+I) - Tm+)r(n-m+l) -~ m!I(n-m)!
T = () ()
Then
L -1
@ (:;) T I B(mAL, a-m) [(n+1)B(m+1,n-m+1)]

We can now substitute the right-hand side of equation (5) into equation

(9) to obtain
nf™ - (n+m'1> - [(ner)B(mﬂ,n)]'1 ,

m
where 1
B(m+l,n) = B(n, m+l) = fxn'lu-x)mdx
0
Therefore
1
114Xm = n+m f x (1-x) dx]
0

Both equations (5) and (8) assert that nﬁ(m = (m+1) An_l. Some inter-
esting special cases of equation (5) are
_ (n-1 (n o
nAO - ( ) n 1 | =1 H
1

= (7) = whr ot e

n-

and

™M
~
n
=

B=
|

_ <n+1 _ (ntl)! _ (n)(n+l)
2 T -1zl T 2

Now we can put equation (8) into equation (4) to obtain
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m 1
(10) F o= 3 [k jf STl ket
k=0 0

where m is an integer, n/2 -1 <m < n/2. But whereas equations
(4) and (5) have meaning only for integer arguments, equations (8) and
(10) can be used to find xﬁy and Fuswhere %, ¥y, and u are any
rational numbers.,

In particular

m 1
(11) F = % [(u-k) f Xu'Zk'l(l-x)kdx]'l ,
k=0 0

where m is an integer, u/2 -1 <m < u/2. The equation (11), and
the definite integral in it, are easily programmed for solution on a

digital computer. A few values of Fu follow.

u F
u

4,1000000 3.1550000

4,2000000 3.3200000

4,3000000 3.4950000

4, 4000000 3. 6800000

4.5000000 3.8750000 u P
4. 6000000 4, 0800000 v
4,7000000 4,2950000 0.1 1.0
4. 8000000 4,5200000 0.2 1.0
4, 9000000 4,7550000 . ;
5.0000000 5.0000000 : :
5.1000000 5.2550000 2.0 1.0
5,2000000 5.5200000 2.1 1.1
5. 3000000 5.7950000 2.2 1.2
5. 4000000 6.0800000 . )
5.5000000 6.3750000 : :
5, 6000000 6. 6800000 3.0 2.0
5.7000000 6.9950000 3.1 2.1
5.8000000 7.3200000 . )
5.9000000 7. 6550000 : :
6.0000000 8.0000000 4. 3.0

SOCKXHKKKKHKAK XK XK



