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1. Introduction

In 1878 Edouard Lucas gave the following result for computing binomial co-
efficients modulo a prime [3], [4].

Theorem 1.1: If p is a prime, n, r, ngs and r, are nonnegative integers, and
np and r, are both less than p, then

np + ”0) - (n)(no>
(rp + ry) ~ \r/\r (mod p) .
We have recently derived the following variations of Lucas' Theorem (see
(11).
Theorem 1.2: 1f n and r are nonnegative integers, and p is prime, then
npy - (7 2
(rp) = (r) (mod p<).

Theorem 1.3: If n and »r are nonnegative integers, and p is a prime greater
than 3, then

() = (2) toa 50,

In [2] we have also obtained the following congruences which bear a strong
resemblance to the theorem of Lucas.

Theorem 1.4: I1f p is prime, » and r are nonnegative integers, and < is an in-
teger strictly between O and p, then

(% o) = v (5 )(E) os

r+ 1/\7
Theorem 1.5: 1f p 2 5 is prime, #n, m, and k are nonnegative integers, k < p,
and 7 is an integer strictly between 0O and p, then

2
(npz +mz; + i) =+ 1)(n Z l)(kpp+ i> (mod p%).

In this paper we show that in fact an infinite sequence of results like
those above hold. 1In our proofs we need the following result (see, e.g., [5]).

1

Theorem 1.6: If p is prime, n = p®, and pt divides k while p**l does not divide
k, then p° % divides () and p®~ **ldoes not divide (%)

2. Main Results

Our first result is as follows.

Theorem 2.1: If p > 5 is prime, n and m are nonnegative integers, s and all
the a; are integers with s > 1, 0 < ap <p, and 0 < gy <p for k = 1, 2, ...,
s - 1, then
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( " )

npe + ag_1p° Tl + .-+ arp + ag

= m ps +1
=(+D (n + l)(as—lps'l + eee +ajp + ao> (mod p?*7).

Proof: Theorems 1.4 and 1.5 show that the conclusion of the theorem is valid
for s =1 and s = 2. We assume therefore that the theorem's conclusion holds
for some s 2 2 and consider the assertion

s+1

( "
nptl + agps + ... +a1p+ao)
=+, 7)) pe (mod p?+2)
- n+ 1 a5p5+...+a1p+a0> mod p )
If m = 0 the assertion above is merely that 0 = 0. Likewise, if m = 1 one

can check that our inductive assertion holds trivially. Therefore, we assume
the validity of the inductive assertion for some m 2 1 and consider first the
case in which » = 0. Then we must treat

(m + l)ps+1 agpf+ ---+ ajp +ag mps+l ps+l
(asps""-- +alp+ao> B jgo <asps+"' +a0—j)< J )
We first show that whenever 0 < j < agzp® + --- + a;p + ag, we have
s+1 s+1
1 mp .)<p . ) = s+2y
(D (asps+"'+alp+ao_J J 0 (modp )
To this end, let j = b,p® + --- + byp + by and note that, if by # 0, then
Theorem 1.6 shows that
s+1
(p . ) =0 (mod po*l).
J

Moreover, by Theorem 1.1,

( mps+1 ) _ ( mps+l

asp® + --- +ay - 4 csp3+---+f30)

_ (m\(O 0 0y _

= (0)e)epny) o (o) =0 (mod o,
since not all the ¢; are zero. Hence, we have the product in (1) congruent to
0 modulo p3+2 as desired. If, on the other hand, by = 0, we see that

( ' mps+1 _ mps+1 >

asp® + -+ + ag - j> (csps + --- +c1p +ag

and that this last is congruent to zero modulo p®*!

Likewise, one can argue that

since ag # 0 by hypothesis.

(piil) =0 (mod p),

and again the product in (1) is congruent to O modulo pet2,
Therefore, we have established that

(m + l)ps+1 _ mps+1 ps+l c42
(asps +...+ ap + ao) - (asps +eee+ a0)4_<asps +eoe + a0> (mod p*™%)
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and by the inductive hypothesis this is congruent modulo ps+2 to
s+1
(m + 1)(asp3 + ...+ ap + a0>
which is the desired result.
Next we assume " # 0 and consider

ps+l

1
(nps+1 _E_ma:pi)QSJrl + aO) - j=ZO <nps+l + aspzpj—i—%.- + ag - J)(pi; )

As previously, one can show that all terms in the above sum are congruent to 0

modulo p®*2 save those where j = 0, § = p°*!, or j = a,p% + --- + ap. So, thus
far, we have

( (m + l)ps+1 )

np3+1 + a,ps + ... + a; + ag

s+1

s+1 1
(nps"l + aspsmi cee +app + ao) * (ng‘ilﬂasps fs-+-- + a0>

s+1
+2
((n - l)ps+1 + agp® + --- + ajp + ao) (mod p®*<).

Now consider the terms on the right-hand side of the above congruence. By the
inductive assumption

mps+l
(nps” tap® t .- tap ao)

_ m p3+1 s+2
= (n+ l)(n + l)(asps +.--+ap+ a0> (mod p )
Moreover, since
mps+1 _m _ ps+l _ o+l
(nps”) (n) =0 (mod p) and (aspS + oo+ ao) = 0 (mod p7),

s+1 s+1 m s+1
(m s+1)( s p ) = ( >( s p ) (mod ps+2) .
np asp + ... + ao n asp 4+ e + ao
And calling on the inductive assumption once again, we see that

mps+1
((” - Dp**h + aeps + oo +ap + a0>

- n(rg)(asps +--p-s—:1a1p + a0> (mod p?*%).

Thus, we conclude that

( (m + 1)ps*l )

np®th + agpe + .-+ ajp + ag

= [(n + 1) (n + 1) + (n) + n(n)](asps Foeee +oay (mod p®*<).
But this last expression is obviously

s+1

m+ 1 p )
+ ap + agl’

(n + l)<n + l)(asp34—---
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This completes the induction and establishes the theorem.
Our next result generalizes that of Theorem 1.3.

Theorem 2.2: 1f p > 5 is prime and k, r, and s are all nonnegative integers,
then
(kps +1)

s+1

rp

1]

(igi) (mod p®*3).

Proof: We proceed by induction. For s = 0 the assertion is identical with that
of Theorem 1.3. We therefore assume the result for some s 2 0 and consider the
assertion

W ()= () .

Obviously assertion (2) holds for » = 0. Thus, we fix » 2> 1, assume (2)
holds for all smaller »r, and establish our assertion by induction on k. Asser-
tion (2) clearly holds for k < r, so we assume its validity for some fixed
k > r and consider

5+2 s+1
(k + 1)ps+2\ _ 14 kp°+2 pst2y & kps +2 po+2

( rps+2 ) - iz%)(rp5+2 - i)( 7 ) - ;g% (rps+2 - Zp)( lp ) + B
where B is the sum of those terms of the form

( kps+2 )(ps+2

rps+2 - 4 : ) for 7 not a multiple of p.

As in Theorem 2.1, it is easy to show that each summand in B is congruent to 0

modulo p®*%. Therefore, we have
s+1
(k + 1)ps+2\ _ P kps+2 ps+2 st

(3) ( IapS"’ ) - ZZ‘—‘:O (pps+2 - Zp)( Zp ) (mOd p )'
Now we consider a particular summand in (3) with 0 < L < p°*l so that

L =agp® + as-1p® 1 + -+ + a;p? where a; # 0 and 0 < g < s.
Then

ps+2 ps+l—qpq+1

( lp ) N ((asps"q + oee. + aq)pQ+1)

ps+1—q q

q+3
((asps"q +agp T+ e+ aq)pq) (mod p*™%)

by inductive assumption. But this simply says
ps+2) _ ps+1) q+3
( p )= ( 1 (mod p9*°).
One can also show
s+1
(pz ) = 0 (mod ps+1'q),

( kps+2 ) - ( kps+1 Z) (mod pa+3),

Pps+2 _ Zp Pps+l _
and
kps+2 _ _
(rps+2 - Zp) =0 (mod p®*179).
Therefore,
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(p;;2>(rpskf;+_2 Zp) = (pSZﬂ)(Ppskfzﬁ_z Zp) (mod p°*H)

(p2f1><rpj%§rtlzp> , <p2fl)(Pp§€i+j Z) (mod ps+u).

It follows then that

oA ) = B0 L) mod g,

Now if we note finally that the inductive hypotheses on kX and » insure that

(igiﬁ) = (igiﬁ) (mod p?+¥)

1

holds, as does a similar statement with » replaced by » — 1, we see that

s+1
(64 D57 L5 (L)) s .

I’ps+2 ;,,ps+1

But this clearly gives
(k + ]_) s+2 k + 1) s+1
( l,,ps+€ ( rps+ ) (mod p+h).
This completes the inductive proof of assertion (2) and establishes the
theorem.

Remark: Professor Ira Gessel has called the author's attention to a result
which implies Theorem 2.2. See Ira Gessel, "Some Congruences for Generalized
Euler Numbers," Can. J. Math. 35.4 (1983):687-709.
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