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1. Introduction

Let S = {xl, L5 «u.s Xp} be a finite ordered set of distinct positive inte-
gers. The nxn matrix [S] = (sy;), where s;; = (x;, x;j), the greatest common
divisor of %; and &j, i1s called the greatest common divisor (GCD) matrix on S
(see [2]). In [6], H. J. S. Smith showed that if S is a factor-closed set,
then the determinant of [S], det[S], is ¢(xy) ¢(xy) ... ¢(x,), where ¢(x) is
Euler's totient function. A set S of positive integers is said to be factor-
closed if all positive factors of any member of S belong to S. In [2], we
considered GCD matrices in the direction of their structure, determinant, and
arithmetic in Z,, the ring of integers modulo n. In [l], we generalized
Smith's result by extending the factor-closed sets to a larger class of sets
called gcd-closed sets. A set S = {xl, X9, ...5 Xn} as above is said to be
gcd-closed if for every 2 and J =1, 2, ..., 7n, (x;, ;) is in 5. Every factor-
closed set is gcd~-closed, but not conversely.

Using structure theorems in [2], Zhongshan Li [4] obtained the value of the
determinant of a GCD matrix defined on an arbitrary ordered set of distinct
positive integers, and proved the converse of Smith's result. Since the
formula derived in [4] is valid for any GCD matrix, it also solves the problem
stated in [5] for arithmetic progressions.

In this paper we shall provide another formula for the determinant of a GCD
matrix based on the class of gcd-closed sets. Li's formula comes as a corol-
lary. We also use this new formula to find closed-form expressions for the
determinants of some special GCD matrices.

2. Preliminary Results

It was remarked in [2] that the determinant of the GCD matrix defined on a
set 5 is independent of the order of the elements of S. Thus, if 5 = {x;, x;,
.5 Ty}, we may henceforth assume that x; < &, < -+« < x,. Given this natural

order on S, we let B(x;) denote the sum
B(x;) = 3 ¢(d),
dlx;
dfz,
t<1
for all ¢ =1, 2, ..., n. We note that B(x;) = ¢(x;) for all < if and only if
S 1is factor-closed.
The following proposition can be found in [1].
Proposition A: Let S = {xz;, %3, ..., Tn} be ged-closed with x] < xy < -+ < Zyp.
Then, for every 2 and J = 1, 2, ..., 7,
(g, %) = 22 Blay).
xk[(xi,xj)
It is clear that any set S of positive integers is contained in a gecd-
closed set. By 5 we mean the minimal such gcd-closed set, or ged-closure of S.
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It is worthwhile to observe that S usually contains considerably fewer elements
than any factor-closed set containing S. We now prove a structure theorem for
GCD matrices.

Theorem 1: Let S = {xy, %3, ..., Ty} be the gcd-closure of S = {y1, Yos «.e>
Ynt with ] < Zp < +vv < @y and y; < Yp < +++ < Yp. Then [S] is the product of
an 7 xm matrix A and the incidence matrix C corresponding to the transpose of
A.

Proof: Define A = (a;;) via
{B(xj) if x; divides y;,

aij
0 otherwise.
If we let C = (e¢;;) be the incidence matrix corresponding to the transpose of

A, then the (Z, j)-entry of AC is equal to

n
> AikCrj = 2 ap = 2 B(xy) s
k=1 xx |ys x| (yys 47)

xk'!/j

which is equal to (¥;, Y;) by Proposition 4 and the fact that S is gecd-closed.

Remark 1: In the above theorem, S may actually be replaced with any gcd-closed
set containing S.

The following corollaries appeared in [1].

Corollary 1: I1If S={xy, x5, ...,%x} is gcd-closed with &} < &y < ... < &,, then
det[S] = B(xy1)B(xs) ... B(xy).

Corollary 2 (Smith): 1f S = {x;, %3, ..., &y} is factor-closed, then
det[S] = ¢(x1)d(xy) ... ¢(xp).

Corollary 3: Let S = {x;, x5, ..., &} be gcd-closed. Then
det[S] = ¢(x1) (@) ... $(xn)

if and only if S is factor-closed.

Remark 2: It was actually shown in [4] that the converse of Corollary 2 is
true.

3. The Value of det[S]

The (Z, J)-entry of the matrix A in Theorem 1 may be written as e;;B(%x;),
where e¢;; = 1 if x; divides y;, and 0 otherwise. Let £ be the n xm matrix
(e;5). Thus, C = ET, the transpose of E. If A is the mxm diagonal matrix
with diagonal (B(x;), B(x3), ..., B(xp)), we have that AC = EMNET.

Now let K1, Ko, ..., K, be distinct positive integers such that

1 <ky <ky<-oee <ky<m,

and let Ex,,k,,...,k, denote the submatrix of E consisting of the kith, ...,
kot columns of EZ. Define Ay, ..., k, similarly. It is clear that

det A(kl)---’kn) = B(xkl)B(xkz) cee B(xkn) * det E(kl,--.,k") N
since

Akyyoon k) = By ok *Ds

where D is the nx n diagonal submatrix of A with diagonal (B(xkl),..., B(xk,)) -
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The following theorem gives the value of det[S] in terms of B(xy), B(xy),
.5 B(xy).

Theorem 2: Let S and S be as in Theorem 1. Then det[S] is given by the sum

(det E(kl’ “"kn)) B(xkl) cee B(-x'kn).
15k1<k2<...<k <m

ns

Proof: From Theorem 1, [S] = AC. Now apply the Cauchy-Binet formula (see [3],
p. 22) to obtain

det[S] = det(AC) = > det Ay, ..., ky *det (B, .. k)"
Isky<ky<.oo<ky,sm !

the result follows from the preceding remarks.

Corollary 4 (Li [4], Theorem 2): Let S be as in Theorem 1 and let S* = {x, x,,
...s Ty} be the minimal factor-closed set containing S, with ] < x, < X3 <
< Zp. Then

det[S] = 3 (det By, ..., ke )20(xg) oo d(2g,)-

l<ky<ky<---<kp<m

Remark 3: By using a proof similar to that occurring in Li's paper for the
converse of Corollary 2 (see [4], Theorem 3), one may establish the converse of
Corollary 1.

4. Determinants of Special Matrices

Although the matrices E(ky, ..., k,) in Theorem 2 are (0, 1l)-matrices, it is
not true in general that det E(x,, ...,x, = *l. In this section, we consider
certain sets S which have the property that every such submatrix E(k,, ..., k,)

has determinant equal to 1 or -1, and thus find a closed-form expression for
det[S].

A set S = {xy, 3, ..., X,} is said to be a k-set if (x;, x;) = k for every
i, J =1, 2, ..., n. For example, {6, 9, 15, 21, 33} is a 3-set. Let S be a

k-set. Then either S =S U {k} or S = S.

Case 1. If x; < %y, < --» <, and K = x|, then S is gcd-closed, and B(x;)
=x; - k for 2 =2, 3, ..., n. Hence, by Corollary 1,

det[S] = k(zp = k) ... (&, - k).

Case 2. Suppose k # x] so that S = {k = 2y, ©;, %9, ..., &n}. By Theorem

2,

det[S] = > (det By o e ) 2B(@e)B(xe,) oo B(2e,).

0sty<tr<---<tysn

Lemma 1: det E(tl’-"’tn) = +].
Proof: If (ty, ..., tn) = (0, 2, 3, ..., n) or (1, 2, 3, ..., n), then E (¢, ..., ¢,)
is a lower triangular matrix with diagonal (1, 1, ..., 1). Thus, det E(y . . ¢,
= 1. If

(£15 «ees Tp) = (0, 1, «o.y, 8 -1, 8+ 1, ..., n) for 2 <5 <n,
then Row s of E(¢y, ..., ¢,) is (1, 0, 0, ..., 0). Moreover, the submatrix of
E(ty, ..., t,) formed by removing Column 1, i.e.,

1

1

1
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and Row ¢ is the (m - 1) x (n - 1) identity matrix. Hence,
det E(tb -Nrtn) = *1.
This completes the proof.

Now B(xy) = k and B(x;) = x; - k for © > 0. Thus, by Theorem 2,

n (xl—k) (xn—k)
det[S5] = k- + (xy — k) ++o (x, - k).
7,‘;1 (z; - k) ! §
Cases 1 and 2 above may therefore be combined into the following theorem.
Theorem 3: 1If S = {xy, %y, ..., Z,} is a k-set with x; < %, < ... < x,, then
det[S] = k(xy = k) «++ (x, — k)
+ [k(xy - k) --- (x—k)]l+———l———+-.-+—l——.
1 i kK x, - k x, - K
Corollary 5: Let S = {xy, %5, ..., ©,} consist of pairwise coprime positive in-
tegers. If Xy < xy < ... < xy, then
det[S] = (x, = 1) --+ (xy = 1)
1 1
+ [(x] - 1) cee (x"_l)][l+52—-——_1+"'+5;_—:_l]'
Corollary 6: Let pj, Pz, -..» P, be primes with p; < pp < .-+ <p,. If S = {pp,
Pos «-.» P }, then
det[S] = (p; - 1) --- (p —1)[1+—————l +...+_____1 ]
. n p1 - 1 P, - 1

1 1
$(py) -- ¢<pn>[1 tToo +_“¢<p;>]'

Finally, in view of Lemma 1, and for lack of a counterexample, we make the
following conjecture and leave it as a problem.

Conjecture: Let S and S be as in Theorem 3, with n > 3. If det E(k,, kg +..» ky) =
t1 for every choice of ki, ko, ..., k,, then either S is gcd-closed or S is a
k-set for some positive integer k.
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