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1. Introduction 

Let us begin by defining the digraph Gn. We identify the vertices of Gn 
with the set {0, 1, 2, . .., n - 1}. The ordered pair (a, b) is an edge of Gn 
if and only if a2 = b modulo n . Our general aim is to show how the number-
theoretic properties of n and n - 1 are closely associated with certain "geo-
metric" properties of the digraph Gn. The most fundamental results for prime 
moduli are established in Section 2. In Section 3 we are able to extend these 
results and at the same time to give a framework in which to view a series of 
theorems about primitive roots. In the last section we determine the cycle 
structure for Gp for an arbitrary prime p, and we use this structure to 
classify primes according to their cycle "signature." 

Some examples of these digraphs are shown in the diagrams. For the digraph 
G13 (which is more or less typical since the sequence a9 a2 , a2 , ..., a2 , ... 
mod n must eventually repeat for any a and any n ) , we observe that there are 3 
connected components which vary in size. Each component consists of a directed 
cycle and a tree or "tail" appended to some or all of the elements in the 
cycle. The tail is called a complete binary tree if it has a greatest vertexs 
called the node, if every vertex in the tail has indegree 0 or 2, and if each 
directed path from an extremity of the tail to the cycle has the same length. 
In G13, the cycle vertex 9 has a tail {10, 6, 7} with node 10. 
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The component of G13 containing 0 is a singleton. If y E y2- (mod n) , then 
(2/, 2/) is an edge, and we call 2/ a loop or sink. The vertices 0 and 1 are 
always sinks. There are many questions one might ask. We will consider the 
following: 

1. Given an n, which vertices in Gn are in a cycle and which are in a 
tail? 

2. How many components has Gn? What are the various cycle sizes? Why are 
the sizes different? 

3c How and why do the tails differ? 
4. Are there other sinks besides 0 and 1? 
5. To what extent do the digraphs characterize n? 

2. The Prime Modulus Case 

In what follows, p will always denote an odd prime. A few observations are 
immediate. The congruence x2 = b (mod p) has 2 solutions, say a and p - a, or 
no solutions [4, p. 84], This has useful and interesting consequences. 

Lemma 0: (a, b) is an edge of Gp if and only if (p - a, b) is an edge. Put 
another way, if (a, b) and (a;, b) are different edges, then a + af= p. 

Proposition 1: Every vertex in Gp except 0 has indegree 2 or indegree 0. Whe-
ther n is prime or not, every vertex in Gn has outdegree 1. 

Proposition 2: If y is any vertex in a cycle of Gps then the tail for y is empty 
or is a complete binary tree. 

If y = 0, then obviously y has both indegree and outdegree 1 and has no 
tail. Otherwise, as y is in a cycle and y * 09 there is an edge, say (a, 2/), 
with a also in the cycle (this a is the same as y if y is a sink, that is, if 
y2- = y) . But, in any case, this means (p - a, y) is a new edge and p - a is 
not in the cycle. Thus, p - a is the node of the tail of y. There are no 
other edges into y since p is prime. By Proposition 1, either p - a has inde-
gree 0 and the tail consists only of p - a itself, or p - a has indegree 2 and 
there are vertices b\ and b^ so that (JD\9 p - a) and (2?2» P ~ a) a r e edges. But 
now Proposition 1 applies in turn to b\ and b^_ in the same way as for p - a. 

Finally, we recall the theorem that, if p is a prime and if gcd(f, p) = 1, 
then xk E v (mod p) has either gcd(fc, p - 1) solutions or no solutions at all 
[7, p. 49]. It follows from this theorem, by induction on the distance from 
the node, that at every level, say distance w from the node, there are 2W ver-
tices in the tail at that level. Therefore, it follows that all vertices of 
indegree zero (the extremities of the tail) are at the same bottom level. 
Thus, the tail is a complete binary tree. D 

These propositions are false if n is not prime (see G 2Q* for example). 
Let us recall some standard terminology. If p is an odd prime, and if x2 E 

a (mod p) has a solution (resp., has no solution), then a is called a quadratic 
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residue (resp., nonresidue) mod p, and satisfies a = 1 (mod p), (resp., = 
-1). In our situation, the numbers at the extremities of the tails are all 
quadratic nonresidues. We call them sources, and there are (p - l)/2 of them. 

We need a few additional ideas from number theory. Let (j) denote the usual 
Euler totient function. (All of the following can be found in [4, Chs. 9-12].) 
Euler?s Theorem says that, if gcd(a, n) = 1, then a^n^ = 1 (mod n) . Suppose 
now that gcd(a, n) = 1. Then there is a least positive exponent, say t, such 
that at E 1 (mod n) . One says "i is the order of a mod n" or "t is the 
exponent to which a belongs mod n." Further, it follows, for any exponent s 
with a3 = 1 (mod n) , that t|s. In particular, t|c|)(n). If the exponent t to 
which a belongs mod n is §(n) itself, then a is called a primitive root of n. 
Every prime number p has exactly (f)(p - 1) primitive roots. 

Now suppose that g is a primitive root mod p. Then ^, as a vertex of Gp, 
is a source and lies at the extremity of a tail for some vertex, say h9 which 
is an element of a cycle. Note that In = g2i/ for some "minimal" y. We say that 
y is the length of the tail. It follows from Proposition 2 that there are 2^_1 

sources in the tail for h and that there are altogether 2 ^ - 1 vertices in the 
tail. Suppose now that the cycle has length x. Then there is a directed path, 
along the directed edges, in which a repetition first occurs, as follows: 

g •> g2 -> . . . -> g2 E h •+ h2 + • • • + h2* E h. 

Since h2- E h (mod p) , we have /z2 _1 E 1 (mod p) . Combining results, 

(2) ^(2*-l)= ! ( m o d p ) . 

Clearly, as the repetition did not occur sooner, the numbers y and x are the 
smallest possible such that (2) is true. 

Proposition 3: If p - 1 = 2wq for some odd number q, then every tail in Gp with 
a primitive root at its extremity has length W. 

Proof: Suppose g is a primitive root for p and that p - 1 = 2wg for some odd 
number q. Then g belongs to the exponent p - 1, and, by (2) and the discussion 
above, it follows that 2^(2X - 1) is a multiple of p - 1. Necessarily, then, 
q\lx - 1 and 2W|2^, and w < y. However, it is impossible that W < y, as this 
implies that the path beginning with g would be at least one step shorter than 
it actually is. Hence, w = y. D 

Proposition 4: Suppose that p - 1 = 2wq for some odd number q. Let h be a ver-
tex of Gp in a cycle of length x as in path (1) with a primitive root for a 
source. Then, 

(a) h has order q. 
(b) 2X - 1 is the smallest Mersenne number divisible by q. 
(c) q = gcd(2* - 1, 4>(p)). 
(d) x\<\>(q) , and x - q - 1 if q is prime and 2 is a primitive root for q. 

Proof: Part (a) follows on untangling quantities: 

1 E g*^ = g2Wcl = [g2W]q = hq. 

Part (b) is argued above, since x is the smallest integer making the path (1) 
repeat a vertex. Also, from (a) and (b), 

q = gcd(2* - 1, q) = gcd(2* - 1, *(p)). 

This proves part (c). For part (d), 

q\lx - 1 -* 2X E 1 (mod 4). 

Now by part (b) , # is the order of 2 mod q, and so the rest follows by Eulerf s 
Theorem mod q. Q 
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Proposition 4 summarizes parts of the earlier comments and emphasizes the 
connection between q in the factorization of p - 1 and the cycle length x. Let 
us give another application of this factorization to show that all tails have 
the same length when n is prime. 

Proposition 5: Suppose p - 1 = 2wq for some odd number q. If h * 0 is any ver-
tex in a cycle for Gp, then the order of h (mod p) is odd and w is the length 
of the tail for h. All vertices in the same cycle have the same order. Con-
versely, if the order mod p of a vertex / in Gp is odd, then / i s in a cycle 
for Gp. 

Proof: Since h * 0, h has a source by the argument in Proposition 2. So let o 
be a source for h. Note that c is necessarily an odd power of some primitive 
root, since an even power could not be a source because it would have a square 
root. Then, by replacing g by c in (1) and (2), it follows that the order of h 
is odd and that the tail for h has length at least W, But if the tail were 
longer, then the repetition in (2) would occur at least one step sooner, a con-
tradiction. Now suppose h and J are any two vertices in the same cycle. Say h 
has order t and j has order s. Note that h2* E j (mod p) for some u. There-
fore s 

J* E [h^]1 E [ht]2U E 1 (mod p). 

This shows s\t. A symmetric argument shows t\s, Hence, s = t, and it follows 
that all vertices in the cycle with In have the same order. 

Suppose that the vertex / has odd order d (mod p) . Then q = dv for some 
odd integer V. Let g be a primitive root for p. Then, for some least positive 
integer r, f = gr (mod p) . Thus, 1 E fd E g ^ (mod p) . This implies rd is a 
multiple of 2wq, and so v is a multiple of 2WV. Thus, 

P = 2w+k°sv9 for fe > 0, s odd. 

Now let c = gsv . Since sv is odd, c is a source for a cycle vertex, say h. 
Thus, since the tail length is w, c2" E h (mod p). It follows that 

^ E [c2«]2^ = [?sU]2»+* = gr = f ( m o d p ). 

This shows that / i s in a cycle, k steps away from h. A different argument for 
this converse gives a little additional information. Note that 2*^' E 1 (mod 
d) , by Euler's theorem, since gcd(d, 2) = 1. This means 2 ^ ^ - 1 = ds for some 
integer s. Then 

/ 2 ^ ) - l E [fd]S = x ( m o d p)_ 

But on multiplying by f, we obtain f2 = f (mod p). This congruence shows that 
/ i s in a cycle, and moreover, that the cycle has length less or equal to $(d). 
This completes the proof. • 

We note that if n is not prime, then the tails in Gn need not all have the 
same length (e.g., see G 2 Q ) • 

3. Some Applications 

The next few propositions explore the extent to which the digraph Gp deter-
mines or characterizes w or q9 where p - 1 = 2wq. Along the way, we obtain not 
only relatively easy proofs of some familiar results about primitive roots, but 
also a framework which the digraphs provide for illustrating and investigating 
questions about primitive roots. 

We refer the reader to Table 1 which contains cycle data for Gp with 
5 < p < 79, and p = 2wq + 1, for q odd. A cycle of maximum length will be 
called a long cycle. From Propositions 4 and 5, we suspect that these long 
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cycles are cycles with primitive roots for sources, and this usually turns out 
to be the case. For those examples in which q is also prime, the cycle struc-
ture is simpler. Further, if w = 1 (that is, p = 2q + 1), the number of prim-
itive roots is q - 1, and there are only q quadratic nonresidues (sources). 
Except for the tail p - 1 for the sink 1, the tails consist of the primitive 
roots alone. Thus, there are q - 1 primitive roots and q - 1 vertices in the 
cycles containing them. Are these 2q - 2 vertices in the same component? That 
is, is there only one long cycle? Sometimes, yes, as for G7, Gll5 G23, and G59. 
But sometimes not, as in G47. What splits the long cycle into parts? 

Table 1. Cycle Data for Gp 

p 
5 

7 

11 

13 

17 

19 

23 

29 

31 

37 

41 

p - 1 = 2 k q 
22 

2(3) 

2<5) 

22(3) 

2 4 

2 (3 2 ) 

2(11) 

2 2 ( 7 ) 

2(3X5) 

2 2 ( 3 2 ) 

2 3 (5 ) 

Cycl 
Length 

1 

1 
2 

1 
4 

1 
2 

1 

1 
2 
6 

1 
10 

1 
3 

1 
2 
4 

1 
2 
6 

1 
4 

es 
Qty 
2 

2 
1 

2 
1 

2 
1 

2 

2 
1 
1 

2 
1 

2 
2 

2 
1 
3 

2 
1 
1 

2 
1 

P 
43 

47 

53 

59 

61 

67 

71 

73 

79 

p-1 = 2 k q 
2(3X7) 

2(23) 

2 2 (13) 

2(29) 

2 2 ( 3 X 5 ) 

2(3X11) 

2(5X7) 

2 3 ( 3 2 ) 

2(3X13) 

Cycl es 
Length Qty | 

1 
2 
3 
6 

1 
11 

1 
12 

1 
28 

1 
2 
4 

1 
2 
10 

1 
3 
•4 
12 

1 
2 
6 

1 
2 
12 

2 
1 
2 
2 

2 
2 

2 
1 

2 
1 

2 
1 
3 

2 
1 
3 

2 
2 
1 
2 

2 
1 
1 

2 
1 
3 

Proposition 6: Suppose p = 2wg + 1 for some odd prime q. Then Gp has 3 cycles 
if and only if 2 is a primitive root for q. More precisely, if x is the expo-
nent to which 2 belongs mod q, then x is the length of a long cycle, and there 
are (q - l)/x cycles of this maximal length. The total number of cycles is 2 + 
(q - l)/x, and the only cycle lengths that occur are 1 and x. 

Proof: First, we prove that there are exactly q vertices in cycles which have 
tails. In each tail, the "bottom row" consists of sources, and in all the 
tails there are (p - l)/2 of these; the next row is half as large, and so on. 
The total number of vertices in tails is 
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(p - l ) /2 + (p - l ) /4 4- . . . + (p - 1)/2W = 2wq(l/2 + . . . + 1/2W) 

= ^(2W_1 + 2W~2 + . . . + 1) 

= 2 \ - ? . 

Now n - (2wq - q) = 4 + 1. So all but 4 + 1 vertices are in tails. There are 
no sources (or tails) for the trivial sink 0. The sink 1 has a tail. The 
other q - 1 vertices which have tails are in non-sink cycles. 

Now, the number of quadratic nonresidues (sources) which are not primitive 
roots is 

(p - l)/2 - *(p - 1) = 2wq/2 - <b(2wq) 

= 2w~lq - 2w~1(q - 1) = 2w~l. 

This is precisely the number of sources for the sink 1, and, by Proposition 
4(a), none of these are primitive roots, since the cycle vertex 1 does not have 
order q. All other sources are primitive roots and thus lead to vertices in 
cycles of the same length x as in path (1). The number of such cycles is 
{q - l)/x since there are exactly q - 1 vertices in the remaining cycles, by 
the first argument. We have shown that two cycles are the two loops 0 and 1 
and that the rest have the same size x. Q 

Corollary 7: If q is prime and p = 2wq + 1, w > 1, then the sources which are 
not primitive roots all lie in the tail for the sink 1. 

In 1852, V. A. Lebesgue put Corollary 7 differently. He said any quadratic 
nonresidue, say g9 is a primitive root for p unless g^-w~ + 1 = 0 (mod p) ; the 
congruence would imply, in our context, that the source g leads to the node 
p - 1 and, of course, in one more step to the loop 1. A list of historical 
references appears in the last section. 

Question: Suppose that all of the non-sink cycles of Gp have the same size. 
Then must p = 2wq + 1 for some odd prime ql 

The answer to the question is "no." The prime p = 26 * 23 * 89 + 1 = 131009 
gives a counterexample. G131009 n a s 2 cycles of length 1 (the two sinks) and 
186 cycles of length 11. This is the smallest counterexample. The largest 
prime counterexample we found has 1252 digits. Full details of these examples 
appear in the next section. 

The counting arguments in Proposition 6 can easily be extended to prove the 
following proposition. 

Proposition 8: Suppose q is odd, and p = 2wq + 1. Then 

(a) The number of primitive roots for p is 2w~l$(q). 

(h) The number of nonresidues for p is 2w~lq. 

(c) The number of sources that are not primitive roots is 2w~l(q - <$>(q))-

(d) The number of sources in each tail is 2w~l. The number of vertices in 
each tail is 2W - 1. The number of vertices in tails is 2wq - q. 

(e) The number of vertices in non-sink cycles is q - 1. 

Proposition 9: Suppose p = 3 (mod 4), i.e., that p = 2q + 1 for q odd. Then r 
is a quadratic residue for p if and only if p - v is a quadratic nonresidue. 

Proof: If v is a residue, it is in a cycle, since tails have length 1. Thus, 
p - v is the node (source) for the vertex r2- which is in the cycle with v. • 

Proposition 10: Gp has exactly two components if and only if p is a Fermat 
prime. 
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Proof: If Gp has exactly two components, then one consists of the sink 0. All 
the other vertices must be in the other component and necessarily lead to the 
sink 1. Now 2 is in the tail somewhere. Therefore, there is a path starting 
with 2 and terminating at the node p - 1. But then p - 1 is congruent to a 
power of two [and the power is a power of two as in path (1)]. Thus, p divides 
I2- + 1 for some t > 0. On the other hand, for some W, there are 2W - 1 ver-
tices in the tail for 1. Thus, Gp consists of the sink 0, the sink 1, and the 
2W - 1 vertices in the tail for 1. It follows that p = 2W + 1. In order that 
there be no remainder in this long division, 

Q 

2W + l|22t + 1 , 

some partial remainder in the division such as - 2 2 ~kw + 1 is zero. Therefore, 
for some k9 2t - kw = 0. It follows that w is a power of 2. This means p is a 
Fermat prime: p = 2W + 1 and w is a power of 2. 

For the converse, suppose p is a prime and p = 2 2 + 1 for some t > 0. Then, 
by Proposition 8, the tail for the sink 1 has 22* - 1 elements. The whole com-
ponent containing 1 has 22 elements. It follows that the component containing 
1 and the sink 0 comprise all of Gp. D 

The next two corollaries are well known, but the proofs are nice applica-
tions of the digraphs. 

Corollary 11: If p = 2W + 1 is prime, then w is a power of 2. 

Proof: By Propositions 5 and 8, tails for Gp have length w and there are 2W - 1 
vertices in the tail for 1. The vertices for Gp include the sink 0, the sink 
1, and the tail for 1. This gives 1 + 1 + (2W - 1) = 2W + 1 = p vertices. As 
all of Gp is accounted for, we see that there are only two components. By Pro-
position 10, p is a Fermat prime, and so w is a power of 2. 

Corollary 12: Every source of Gp is a primitive root if and only if p is a Fer-
mat prime. 

Proof: First, suppose all sources are primitive roots. If g is a source for 1, 
then the order of g is a power of two, and the desired result follows by Corol-
lary 11. Conversely, when p is a Fermat prime, there are only two components 
by Proposition 10. Thus, all the sources (and all the primitive roots) are 
sources for the sink 1. Let g be any source. Then g2w ~ l (mod p) ; so g has 
order a power of two, some divisor of 2W. But if g^y = 1 (mod p) and y < w, 
then the path from g to 1 would be shorter, a contradiction. Hence, y = w and 
g is a primitive root. • 

Proposition 13: Exactly one source of Gp fails to be a primitive root for p if 
and only if p = 2q +1 for some odd prime q and p - 1 is the source not a primi-
tive root. 

Proof: The second direction follows from Proposition 8(c) and Corollary 7. Now 
suppose only one source, say g\ is not a primitive root. Then gJ must lead to 
the loop 1 as, otherwise, some other source g" leading to 1 would be a primi-
tive root with order a power of two, and by the previous results, p would be a 
Fermat prime, and every source would be a primitive root, a contradiction. 
This same argument shows that the tail to which the source gr belongs must have 
only one source. Thus, the tail consists of only the node. Since all the 
tails have the same length, by Proposition 5, p - 1 = 2q for some odd number q. 
Hence, there are q sources, and by hypothesis, q - 1 of them are primitive 
roots. There are also q residues of which q - 1 are in non-sink cycles. If h 
is any of these vertices in non-sink cycles, by Proposition 4, the order of h 
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is q. Therefore, the non-zero vertices of Gp have only the orders 1 (the sink 
1), 2 (the nonresidue p - 1 = gr), 2 (the q - 1 primitive roots), and q (the 
q - 1 vertices in non-sink cycles). This accounts for all the non-zero verti-
ces of Gp and none has order some proper divisor of q* However? if g is a pri-
mitive root, then g has order 2q. If kj = q for 1 < k, J < q, then the element 
g2k would have order j, a proper divisor of q. But there is no such vertex. 
It follows that q is prime. • 

We now give a new proof of a result of Baum [2]. Like Wilansky [15], we 
will not use quadratic reciprocity. The argument is made easier using the 
representation for Gp. We assume familiarity with the Legendre symbol and its 
properties (see [4], [7]). 

Proposition 14: Suppose p = 2q + 1 and that q is an odd prime. It follows that: 

(a) If q = 1 (mod 4), then 2 and q + 1 are primitive roots for p (and p - 2 
and q are residues). 

(b) If q = 3 (mod 4), then p - 2 and q are primitive roots for p (and 2 and 
q + 1 are residues). 

(c) In either case, 2(-l) is a primitive root for p. 

Proof: (a) Using the Legendre symbol and noting that p E 3 (mod 8) in this case 
so that (2|p) = -1, we have 

1 = (l|p) = (2q + 2|p) = (2(q + 1) |p) = (2|p)(<7 + l|p). 

It follows that q + 1, like 2, is a quadratic nonresidue mod p. By Proposition 
9, since q + 1 is a source, q is a residue; likewise, as 2 is a source, p - 2 
is a residue. But by Proposition 13, these sources are primitive roots since, 
clearly, neither is p - 1. The proof for (b) is similar, and (c) follows from 
(a) and (b). 

Proposition 15: Suppose q is odd and p = 2wq + 1, w > 2. Then it follows that: 

(a) g is a primitive root mod p if and only if p - g is also, and b is a 
source but not a primitive root if and only if p - b is also. 

(bj If w > 3, then ±2 and ±2mq (0 < m < w) are never primitive roots for p. 

(cj If w = 2 and if (7 is prime (that is, p = 4^ + 1), then 2, p - 2, 2q, and 
2q + I are primitive roots for p; also, ̂  and 3 ^ + 1 are residues. 

Proof: For (a), since W > 2, tails have length at least two, and so the tails 
are not merely nodes. Thus, by Lemma 0, the sources come in pairs a and p - a 
with a1 E (p - a ) 2 (mod p ) , and both lead to the same cycle vertex. By Propo-
sition 4, sources which are primitive roots lead to cycles in which each vertex 
has order q. There are <K<?) such vertices, each of which has a tail with 2w~l 

sources. But by, Proposition 8, there are altogether 2w~l §(q) primitive roots. 
Thus, no source which is not a primitive root could also lead to a vertex of 
order q. Therefore, if one member of a pair a and p - a is a primitive root 
(or is a source not a primitive root), then so is the other. 

For (b), since p E 1 (mod 8), we have (2|p) = 1. Thus, 2 and p - 2 are not 
sources. Now, 

1 = (l|p) = {-2wq\p) = (2u\p)(-q\p) = (-q\p). 
So -q Is a residue, and by part (a) so is q. It follows that ±2mq is a residue 
for 0 < m < w. 

For (c), (2 Jp) = -1, since p E 5 (mod 8). Thus, 2 is a source. By Corol-
lary 7, 2 must be a primitive root because, otherwise, 2 is a source for the 
sink 1, and then we would have 22 = p - 1 = kq = the node for 1, an impossibil-
ity. It follows from part (a) that p - 2 is also a primitive root. Now 
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(2|p)(2<? + l|p) = (p +-l|p) = 1. 

Thus, 2q + 1 is a source and clearly must be a primitive root for, otherwise, 
by Corollary 7 again, 

(2q + i ) 2 = 4q2 + kq + 1 E 4q2 = p - 1 = 4q, 

which would imply q = 1, an impossibility. By part (a) again, 2q is a primitive 
root. Since tails have length 2, p - 1 is not a source. Hence, 

1 = (p - l|p) = (4<?jp) = (q\p) . 
Thus, q Is a residue, and by part (a) so is 3q + 1. D 

4. Cycles and Signatures for Arbitrary Prime Moduli 

In this section we consider an arbitrary prime p with p = 2Wq + 1 where q 
is odd, w > 1, and begin with a nice generalization of Propositions 4 and 6. 

Proposition 16: Suppose p = 2wq + 1 and q is odd. If d is a divisor of (7, then 
there are §(d) vertices in Gp, all in cycles, of length x = x(d), where x is de-
termined from 2X - 1, the smallest Mersenne number divisible by d. The number 
of cycles corresponding to d of length x(d) is 

<\>(d)/x(d). 
For any cycle length 2/, the number of cycles of length y is 

E {<|>(d)/a;(d) : 3d, x(d) = y}. 
The total number of cycles of Gp is 

1 + E {<f>(d)/a;(d) : d\q}. 

Proof: For each divisor d of q, there are <$>(d) vertices of order d (mod p) [4, 
p. 80], and by Proposition 5, they are all together in the same cycle or 
cycles. It follows that there are (\)(d)/x(d) cycles containing these vertices. 
Since 

E i<\>(d) : d\q] = q, 
this accounts for all of the q vertices in cycles with tails (Proposition 8) . 
The only other cycle is the sink 0. It follows that there are altogether 

1 + Zi^(d)/x(d) : d\q} 
cycles. D 

We are now in a position to explain all the data in Table 1. For example, 
for p = 61, we have d = 1, 3, 5, and 15. For d = 1, the corresponding cycle is 
the sink 1. For d = 3, the corresponding cycle has length c]>(3) = 2, and both 
cycle vertices have order 3 mod 61. For d = 5, the corresponding cycle has 
length (f)(5) = 4. The remaining eight cycle vertices are in the other two 
cycles of length 4, corresponding to d = 15, and 0(15) = 8. The sources for 
these eight vertices are the primitive roots of 61. Since, in this last case, 
there are two cycles of length 4 instead of one of length 8, we know that 
2^ - 1 is the smallest Mersenne number divisible by 15. 

The example of the prime p = 26 * 23 * 89 + 1 = 131009, referred to in section 
3, is of special interest. Cycle data for this p is summarized in Table 2. 
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Table 2. Cycle Data for G 

d9 an odd 
divisor of 

V ~ 1 

1 
23 
89 

23(89) 

There is one 

p = 1 + 26 • 23 • 

§(d) , the number 
of vertices 
of order d 

1 
22 
88 

22(88) 

additional taill( 

89 

3SS 

= 131009 

Number 
of 

cycles 

1 
2 
8 

176 

cycle for 

Order of 
2 mod d 

(cycle length) 

1 
11 
11 
11 

the sink 0. 

By Proposition 8, there are q = 23(89) = 2047 vertices in cycles with tails. 
These are the nonzero elements of G 1 3 1 QQ 9 of odd order. By Proposition 16, for 
each divisor d of q, there are $(d) elements with order d. These d are listed 
in Table 2. Since the smallest Mersenne number divisible by 23 (i.e., 21 1 - 1) 
is also the smallest Mersenne number divisible by 89, there are only two cycle 
lengths, 1 (2 cycles) and 11 (186 cycles), but q is not prime. Therefore, the 
converse to Proposition 6 does not hold. In the example, all non-sink cycles 
must have the same length 

11 = x(23) = #(89) = x(q)> 

but the ten cycles corresponding to d - 89 and to d = 23 have sources which are 
not primitive roots. 

We were interested in whether counterexamples to a possible converse of 
Proposition 6 were rare. Therefore, in Table 3, we give a list of all primes 
of the form 1 + 2W • 23 • 89 which have fewer than 1300 digits. Each of them has 
the same 188 cycles (two sinks and the rest of length 11)—the tails get large! 

All our computer data was generated by the third author (J. S. M. , corre-
spondence welcome) on a Dell 310 microcomputer with a 20 mHz 80386 CPU. 

Table 3. A List of Primes of the Form 1 + 2W • 23 • 89 

w 
80 
296 
354 
428 
2118 
2856 
2960 

Number of 
digits 

28 
93 
110 
133 
641 
864 
895 

Computer 
in 

time 
seconds 

1 
1 
1 
2 
68 
159 
176 

Note: values of 
W were checked 
up to w = 4332. 

Prime numbers 
were obtained 
also for w = 6, 
14, 18, 48, 60. 

Our first algorithm to check for primality proceeded in three steps, each 
of which used UBASIC [8] routines for handling large integers. First, we 
checked for small prime factors less than or equal to 131071. If n passed this 
test, we applied Fermatfs Theorem in step 2. That is, pick a prime, say p, and 
see if pn~l ~ 1 (mod ri) . If 1 is not the result, then n is certainly composite, 
but n can pass this test and be composite. If n passes step 2, then step 3 
uses the method of Lucas & Lehmer [6, §4.5.4]: "if there is a number x for 
which the order of x modulo n is equal to n - 1, then n is prime. . . . The 
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order of x will be ft - 1 iff (i) xn~l (mod ft) = 1; and (ii) ^O-D/P (mod ft) is 
not 1 for all primes p\n - 1." 

This test is convenient because we know the factorization of ft - 1; never-
theless, we reduced the time factor for larger ft by using Prothfs test instead 
of steps 2 and 3 (see [3], p. 92, or [10]): "Let ft - 2wq + 1, where W > 1, 0 < 
q < 2 , and 3\q. Then ft is prime if and only if 2^n~l)/1 E -1 (mod ft)." In this 
test, 3 can be replaced by any quadratic nonresidue of ft. The time lengths in 
Table 3 correspond to the use of ProthTs test (when q < 2W). 

Since 2 2 3 - 1 = 47(178481) and since the order of 2 is 23 with respect to 
47 and 178481, another set of numbers of the form 1 + 2W * 47 * 178481 was inves-
tigated. This form gives primes for w = 6, 24, 42, 134, 204, 806, 3660, and no 
other if w < 4352. The prime number corresponding to w = 3660 has 1109 digits. 

One last set of examples concerns primes of the form 1 + 2W* 233 m 1103 • 2089 
(which correspond in similar fashion to 2 2 9 - 1). Primes occur for W = 12, 
144, 312, 548, 644, 3284, and 4128, and for no other w < 4364. If w = 4128, 
then the prime number has 1252 digits. Although ours is a respectably large 
prime to be both discovered and proved prime on a standard (unmodified) micro-
computer, the current record has over 2000 digits (personal correspondence, S. 
Yates; see also [16]). 

Proposition 17: Suppose p = 2wq + 1 and q is odd. The length x(q) of the long-
est cycle of Gp is the least common multiple of the set of cycle lengths. 

Proof: Suppose x(di) and x(d2) are the orders of 2 mod d\ and mod d2, respec-
tively. If d1\2m - 1, that is, if 2m = 1 (mod d\), then m is a multiple of 
x(d-i), and likewise for d2. Clearly, if 

m = lcm(x(di), x{d2)), 
then 2 m - 1 is the smallest Mersenne number divisible by d\ and d2* The propo-
sition now follows by induction on the set of divisors of q. Q 

For each entry p = 2wq + 1 in Table 1, let us call the corresponding two-
column matrix for the length and quantity of cycles the signature of p corre-
sponding to q. Since the two columns are determined only by the factorization 
of q, we will suppress (notationally) the mention of p and will denote this 
matrix by S(q) . In Table 1, we observe that 19, 37, and 73 have the same sig-
nature S(9). The primes listed in Table 3 all have the same signature S(q) for 
q = 23(89). 

It is convenient to use the notation S(q) even if there are no primes cor-
responding to a particular q. In this case, we say the signature S(q) is 
"empty." If the matrix S{q) has, say, m rows and entries s^j , then 

m 

T,sHsi2 = % + X-
i= 1 

There is a natural equivalence relation, say 5, on the set of primes defined by 
PiSp2 if and only if p, and p2 have the same signature. It will cause no con-
fusion if we associate nonempty signatures with the corresponding equivalence 
class. 

Whether any of these equivalence classes of S is infinite is an interesting 
and apparently open question. Perhaps the most closely examined class in this 
regard is that with signature 5(1), the Fermat primes. Sierpinski asked whe-
ther there were infinitely many primes of the form 2 W3 X + 1 for some w and x 
[12]. If not, then there are infinitely many x such that the signatures S(3X) 
are empty. This problem is still unsettled. 

Interestingly, Sierpinski has proved that infinitely many other signatures 
are indeed empty [1], [5], [13]. In particular, if 

q = 1 (mod [232 - 1] • 641) and q = -1 (mod 6700417), 
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then every integer in the sequence {2wq + 1 : w = 1, 2, ...} is divisible by at 
least one of the primes in the "covering set" {3, 5, 17, 257 5 641, 65537, 
6700417}. Numbers q such that S(q) is empty are called Sierpinski numbers, and 
discovering the smallest such q is an open problem [5]. The smallest known 
Sierpinski number is q = 78557, with covering set {3, 5, 7, 13, 19, 37, 73}. 
Are there any Sierpinski numbers that do not have a finite covering set? 

The idea of iteratively squaring some integer (or iterating a quadratic 
function), and reducing modulo n each time, occurs in computer-generated se-
quences of random or pseudorandom numbers [6] and in certain factorization 
methods [9]- Also, D. Shanks [11] suggests using a "cycle graph" (not digraph) 
to analyze the multiplicative group of least positive residues prime to n. 
Later Shanks suggests constructing a digraph somewhat similar to ours but with 
edges (a, a2 - 2). However, we have not seen the digraphs used here in the 
literature. 

Many of our results about primitive roots were known 140-160 years ago. 
From Chapter VII of [3] we find that in 1830 M. A. Stern proved that, if q and 
p = 2q' + 1 are odd primes, then 2 or -2 is a primitive root of p according to 
whether p = 8n + 3 or 8n + 7, and that, if n = kq + 1, then ±2 are primitive 
roots (rediscovered by P. L. Tchebychev in 1845 and V. Bouniakowski in 1867. 
See also Shanks [11, Ths. 38-40]). F. J. Richelot in 1832 (and later M. Frolov 
in 1893) proved that, if p = 2m + 1 is prime, then every quadratic nonresidue 
is a primitive root. 

E. Desmarest and V. A. Lebesgue separately proved in 1852 (and later G. 
Wertheim in 1894) that, if q and p = 2wq + 1 are odd primes, then any quadratic 
nonresidue g of p is a primitive root unless g2W~ + 1 = 0 (mod p ) . F. Landry 
in 1854 also proved this and added that, if p = 2m + 1, where m is prime, then 
the quadratic nonresidue h was a primitive root of p if h * p - 1. Allegret in 
1857 proved that, if q is odd, then q is not a primitive root of 22-xq + 1. 
More recently, Baum [2] and Wilansky [15] proved most of our Proposition 14, 
having observed Propositions 9 and 13 also. Corollary 11 is well known (see p. 
58 of Stewart [14]). 

If the modulus is not prime, then most of our results fail to be true. 
Tails need not have the same lengths. In fact, the length of a tail must be 
redefined. Since a cycle vertex may have indegree greater than 2, tails need 
not have nodes. The sink 0 can have a tail longer than that for vertices in 
non-sink cycles. Given any k > 1, there are infinitely many n so that Gn has 
2^ sinks. All the cycles can be sinks. A single long cycle is rare. These 
and other facts will be explored in a later paper. 
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THE FIBONACCI CONFERENCE IN SCOTLAND 

Herta T. Freitag 

Ever since our previous Meeting at Wake Forest University in North Carolina, the 1992 Conference had been 
awaited with keen anticipation. Finally, the announcement appeared: "sponsored jointly by The Fibonacci 
Association and The University of St. Andrews, THE FIFTH INTERNATIONAL CONFERENCE ON 
FIBONACCI NUMBERS AND THEIR APPLICATIONS will be held at The University of St. Andrews, Scotland, 
from July 20th to July 24th 1992. Co-chairmen of the Local Committee are George M. Phillips and Colin M. 
Campbell, whereas the International Committee is co-chaired by A. N. Philippou and A. F. Horadam." 

The participation, 80 in number, 12 of whom are women mathematicians, practically doubled previous 
attendances. All five continents were represented. From Europe there were 36; 29 came from America, 10 from 
Asia, 4 from Australia, and 1 from Africa. Among the 24 countries represented by Conference participants, the 
United States provided the largest contingent of 25 followed by Scotland and England, each with 8, and four 
countries—Austria, Canada, Italy, and Japan—each providing four registrants. 

In all our Conferences do we greatly appreciate A. N. Philippou, "FATHER OF OUR INTERNATIONAL 
CONFERENCES ," as he had initiated our FIRST meeting at Patras University in Greece in 1984. And in all our 
Conferences (and I do hope that in his proverbial modesty he will not censure this remark) we always cherish our 
conviction that a program, designed by our esteemed and beloved editor, Professor G. E. Bergum, spells excellence, 
even if—alas—this time double sessions would become necessary. 

What caused the big increase in attendance? 
It may have been the fact that The University of St. Andrews is held in high esteem the world over. It may 

have been the magnetism, mathematical as well as personal, of the set of co-chairmen. 
Soul-searching choice decisions had to be made for the overlapping sessions as there were 68 papers, 6 of 

them presented by women mathematicians who hailed from Bulgaria, China, Italy, Scotland, and (two of them) 
from the U.S. At least three "non-mathematicians" gave papers, one a research astronomer, two electrical engi-
neers. The ages ranged from 33- to 83+, an age span of 50 years! And the distance traveled by speakers ranged 
from zero (four St. Andrews faculty members gave papers) to approximately 12,000 miles (the journey from New 
Zealand). 

Please turn to page 367 
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