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1. INTRODUCTION 
The representation of an integer n as a sum of k squares is one of the most beautiful problems 

in the theory of numbers. Such representations are useful in lattice point problems, crystallogra-
phy, and certain problems in mechanics [6, pp. 1-4]. If rk{ri) denotes the number of representa-
tions of an integer n as a sum of k squares, Jacobi's two- and four-square theorems [9] are: 

(1) r2(n) = 4[d1(Ti)-d,(n)] 

and 

(2) r4(p)=S Xr f 

d\n 
tf#0(mod4) 

where df{n) denotes the number of divisors of n, d = i (mod 4). In literature there are several 
proofs of (1) and (2). For instance, M. D. Hirschhorn [7; 8] proved (1) and (2) using Jacobi's 
triple product identity. S. Bhargava & Chandrashekar Adiga [4] have proved (1) and (2) as a 
consequence of Ramanujan's ^ summation formula [10]. Recently R. Askey [2] has proved (1) 
and also derived a formula for the representation of an integer as a sum of a square and twice a 
square. The authors [5] have derived a formula for the representation of an integer as a sum of a 
square and thrice a square. These works of Askey [2] and the authors [5] also rely on 
Ramanujan's ^¥x summation [10]. 

In 1951 P. T. Bateman [3] obtained the following formula for r3(n): 

(3) r3(n) = —SL(l,x)q(n)P(nl 
n 

where n = 4anu 4|nb 

[0 if/?! = 7 (mod 8), 
q{n) = \ra if ^ = 3 (mod 8), 

[3 • Ta~l if »j = 1,2,5, or 6 (mod 8), 

p odd 

b-l ( ~{-nlp2b) 
\ - i 

y=i v 
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(P(n) = 1 for square - free n\ and 
00 

L(S,%) ~ ^YjXim)m~S w^h Z(m)> the Legendre-Jacobi -Kronecker symbol: 
m=\ 

f-A\ fl if/if = 1 (mod 4), 
Z(m) = \— \ = \o ifw = 0(mod2), 

\mJ [-1 ifws3(mod4). 

In this note we obtain an alternate formula (13) for r3(n) which involves only partition func-
tions unlike Bateman's formula (3) which is expressed in terms of Dirichlet's series {6, pp. 54, 55]. 
To derive our formula (13) for r3(n), we employ G. E. Andrews' [1] generalization of 
Ramanujan's 1T1 summation: 

(4) 
(a-' - b~^(AUBUbq I a) Jm I bUgUAB I ab)x 

(-bU-aU-A/bU-A/aU-B/bU-B/a)„ 

= a-lf (-q'°UM/ab)m(-br tf (A)m(-aq/B)m(-B/b)" 

where 

and 
m=0 

(a)m=(a;q)m= (a'm
q\ , \q\<l. 

2. THREE-SQUARE THEOREM 
In this section we derive a formula for r3(n). the number of representations of an integer n as 

a sum of three squares. For convenience, we first transform Andrews' formula (4). 

Lemma 2.1 (G. E. Andrews'[1]): 

(A;q2U-A0/aqz;qX(-W,qX(-q/z-,qX(q2;qX(afa^qX (5) 

1 , ^ (l/a;q2U-AB/aqz;q2U-aqr) _ 
[l-(A/aq2)] £ {Jlq2-q2)m(Alaq2;q2X m+l 

-m 

n=i (aq \q )m(-A/aqz;q )„ 

\£\Pq\<\z\< \l\aq\ and \q\< 1 with none of the factors in the denominators of (5) being 0. 
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Proof: Equation (4) is equivalent to 

a-l[l-(a/b)](AUBUbq/aUaq/bUqUAB/ab)K 

[l + (B/a)](-b)K(-aU-A/b)x(-A/a)x(-B/b)x(Bq/a)a 

1 ^(-q/a)m(AB/ab)m(-b)m 

-a [\ + (B/a)]^0 (-Bq/a)m(-A/a) m+l 

r , (-b/B) f(A)m(-a/B)m+l(-b/B)-"'-1 

[l + (a/5)]~0 (-aUii-A/b)^ 

which, in turn is equivalent to 

(AUBUbq/aUa/bUqUAB/ab)x (6) 
(-bU-a)x(-A I b)a(-A I a)x(-B I b)x{-Bq I a)n 

^f(-qla)m{ABIab)m(-bY f(A)m(-a/B)m+1(-b/Bym-1 

Change b to -z, a to -qla', B to Via' in (6) to obtain 

(AUb'/a'U^'Uq/a'zUqUAb^zq)^ 
(7) 

(zUq/a'UA/zUAa'/qUb'/a'zUbX 

= j^ja'UAb'Izq)mzm
 | £(A)„(g/b')m+l(a'zIb'y(m+l) 

m=o (b')m(Aa' I q)m+l ffl=0 (q/a')m+i(A/z)m+l 

Change q to q2, a' to 1 / a, Z>' to /ty2, and z to - aqz in (7) to obtain (5). Hence, the lemma. 

Corollary 2.1: 

(8) 
f «> A 

\n=-co w)wi 

Proof: Putting a = /?= - 1 , 2 = 1, and A - q2 in (5), we have the second of the equations (8), the 
first being a well-known theta-function identity [10]. In fact, put z = 1, A = a = /? = 0 in (5) and 
use the easily verified Euler identity 

Before stating the main theorem of this section, we introduce two partition-counting func-
tions pm{n) and qm{n). 
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Definition 2.1: Given a partition ;r, lete(;r) denote the number of even parts in n. Define 
Pm(n) to be the set of partitions of n in which odd parts are distinct and all parts are less than or 
equal to 2m, Qm(n) to be the set of partitions of n in which even parts are distinct and all parts are 
less than or equal to 2m -1. We define 

(9) Pm(n)= I ( - l ) g ( ; r ) , 

(10) qm(n)= Z H m 

so that 

(ii) (-?;g2)m =zPmin)q», 
(-? ;q )m „=o 

(12) (f;^-'-Z?m(")g". 

Theorem 2.1: If r3(n) is the number of representations of n as sum of three squares and if 
pm(n) and qm(n) are as defined by (9)-(1.0), then 

n 

(13) r3(n) = X Z ( - i y [ 2 # > " ^ ~ m) + 49m(« - 2im - J»)]. 
m=l 0<i<(n-m)/2m 

Proof: Employing (11), (12), and the fact that 
m oo 

in (8), we immediately have (13). 

2im+m 
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NOTICE OF NOVEMBER 1992 VOLUME INDEX CORRECTION 

• K. Atanassov's name was inadvertently omitted from the list of authors. 
• K. Atanassov's coauthored article "Recurrent Formulas of the Generalized 

Fibonacci and Tribonacci Sequences" was incorrectly credited to Richard 
Andre-Jeannin. 
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