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1. INTRODUCTION 

Although it has been studied extensively, Pascal's triangle remains fascinating to explore and 
there always seems to be some new aspects that are revealed by looking at it closely. In this 
paper we shall examine a few nice properties of the so-called Fibonacci diagonals, that is, those 
slant lines whose entries sum to consecutive terms of the Fibonacci sequence. We adopt through-
out our text the convention that the n^ Fibonacci diagonal is the one that contains the binomial 
coefficients 

With that notation, the first diagonal contains only f°], the second one contains only (]X the 
third one contains f JJ and (Jj, and so on. Addition of the terms of the «* Fibonacci diagonal gives 
the 72th term of the Fibonacci sequence 

1,1,2,3,5,8,13,21,34,55,. . . . 

For instance, the terms of the 10th Fibonacci diagonal sum to 

^M?MKM^i + 8 + 2 i + 2 0 + 5=5 5 ' 
We shall also be interested in the corresponding diagonals in Pascal's triangle mod 2, that is, 

the triangle in which the entry (fj is replaced by H, its residue mod 2. 
Throughout our discussion, it will be convenient to consider the rows or diagonals of Pascal's 

triangle as vectors with integer components. For instance, the n^ horizontal row, n > 0, will be 
seen as the vector Xn in Zn+l defined by 

Various well-known operations on these rows or diagonals can be seen as the scalar product 
of such vectors with Bn - (hn\bn~l,...,h, 1) GZ"+ 1 for some 5eN. Let us give some examples 
involving the above Xn. We shall use the notation nbXn to designate the scalar product 

(this notation is motivated by the fact that in some sense the vector Xn is being "projected" on the 
Powersoft). 
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(*) 
By the Binomial Theorem, 

In particular, for 6 = 1, one gets nxXn - 2", i.e., the terms of the nih row of Pascal's triangle sum 
to 2". And for b = 10, one gets 7rlQX„ = (11)". This last equality can be interpreted as follows 
(see Gardner [1]): when the entries of the rows of Pascal's triangle are considered as the values of 
a place-value, base-ten numeral, the numbers obtained are the successive powers of 11. We could 
of course have a similar interpretation by replacing base-ten numeral by base-6 numeral and then 
the powers of 11 by the powers of (6 + 1). 

Note that (*) can be rewritten as 

7ThX„ = ft, b+lK 

where \ = (1,0, 0,..., 0) eZfl+1, with a projection appearing on both sides of the equality sign, but 
with different bases. Such a "change of base" phenomenon will be encountered again in section 2. 

A similar discussion can also be undertaken considering the rows of Pascal's triangle mod 2. 
The 17th row will now be interpreted as the vector 

n 
0 •> n 

1 j 

n 
2 ,..., 

n 
n 

in Z"+1 with components 0's and l's. It was shown by Glaisher [2] that the projection 

*?« = X 
k=0 

i.e., the number of odd binomial coefficients (f\ for a given n, is again a power of 2, namely 2#<<n\ 
where #(«) represents the number of l's in the base-two representation of n. For instance, the 5th 

row vector is Y5 - (1,1,0, 0,1,1) so that KXY5 -A- 2#(5), which corresponds to the fact that 5 is 
written as 101 in base two with the digit 1 appearing twice. When b = 2, the projection 

^ Y„ = X 
Jc=0 

•%n-Je 

gives Gould's numbers. These numbers were introduced in Gould [3], where a recursion formula 
was given for them and a relationship with Fermat's primes was obtained (see also Hodgson [4] 
for details). 

We shall be concerned in this paper with the study of analogous results obtained when Fibo-
nacci diagonals are considered instead of horizontal rows, both in Pascal's triangle and in Pascal's 
triangle mod 2. 

2. FIBONACCI DIAGONALS IN THE STANDARD PASCAL TRIANGLE 

Recall that Fibonacci diagonals are numbered starting with n - 1. For further reference, we 
list the first twelve vectors thus obtained: 

146 [MAY 



ON SOME PROPERTIES OF FIBONACCI DIAGONALS IN PASCAL'S TRIANGLE 

Si.:-
5 2 : 

s3-. 
s4-
S5--

s6--

=0) 
= 0) 
= 0,1) 
= 0,2) 
= 0,3,1) 
= 0,4,3) 

S7 = (l,5,6,l) 
S8 = (l,6,10,4) 
S9 = (1,7,15,10,1) 
4=0 ,8 ,21 ,20 ,5 ) 
Sn= (1,9,28,35,15,1) 
£i2= (1,10, 36, 56, 35, 6) 

Clearly 7ilSn gives the nih term of the Fibonacci sequence. We now study the projections 
7tbSn for b G N . 

We first note that, for all n > 1, S2n_x and S2n are both vectors in Zn. The following notation 
will be convenient in the sequel. For Sn - (a{, a2, a3,...), we say that inSn = (al,0,-a2,0,a3,...) 
is the image of Sn in Z" and that /W+1A?„ = (0,ax, 0, - a 2 , 0, a3,...) is the image of Sn in Z"+1 (note 
that these image vectors are obtained by assigning in turn + and - signs to the components of Sn 

and then inserting 0's in between those entries). 
Before stating the general result, it is instructive to look at a few examples. Let us first con-

sider the vector £8 = ( l , 6 , 1 0 , 4 ) e Z 4 ; clearly 7ilQSs = MO3 +6-102 + 10-101 +4-10° = 1704. It 
can also be checked that 1704 can be given by a simple expression involving only the entries of 
$4 =(1,2), namely, 1704 = 1 -123 — 2-121; we can thus write 7rl0S^-nl2iASA, where i4S4 = (1, 0, 
- 2 , 0). 

For Sl0 = (1,8,21,20, 5), we find TT10S10 = 20305; since i5S5 = (1, 0, - 3, 0,1), we obtain simi-
larly 

;r12J5i?5 = l -12 4 -3-12 2 +1-12° =20736-432 + 1 = 20305 = TT10S10. 

On the other hand, for S9 = (1, 7,15,.10,1), we have 7il0S9 = 18601; introducing the two 
image vectors i5S5 = (1, 0, - 3, 0,1) and i5S4 = (0,1,0, - 2, 0), it is easily checked that 

^nh^s ~ ^nh^A ~ 18601 = 7TIQS9. 

The use of base b = 10 was by no means essential in the above examples, as we shall now 
show. 

Theorem: 

Proof: Using the basic recursion formula 

it is easily seen that 

xb$2n-i + 7r
bS2n_2 = 7rbS2n, that is, nbSln^l^nbS2n-7tbS2n_2. 

It is thus sufficient to prove a), since b) then follows at once. 
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Proof of a): Let us expand both sides of the required equality. One must thus establish that 

[-1 

where [x] denotes the integer part of x. This can of course be done using the techniques of 
generating functions. We prefer, however, to give a proof based on a common combinatorial 
interpretation of both sides. 

We first use the Binomial Theorem to replace the last factor in the right-hand side of the 
above, thus getting 

We now need to expand the right-hand side of this inequality as a polynomial in b and then 
compare the coefficients of the powers of b with those occurring on the left-hand side. For a fixed 
k, we are thus interested in values of t and u such that u = k-2t, since only these terms will 
contribute to the coefficient of bn~l~k. One is then lead to prove that 

or, equivalently, that 

for k < n -1. 
It is easily verified, for instance by induction on k, that (m+l

k ~k) can be interpreted as the 
number of ways of selecting k integers among 1, 2, 3, ..., m in such a way that no two of them are 
consecutive. The left-hand side of (**) can thus be seen as the number of ways of picking k 
integers among 1, 2, 3, ..., 2w-2, no two of them being consecutive. 

We want to show, of course, that the right-hand side of (**) counts exactly the same number. 
Let us first observe that the first term, 2k -(V), c a n he s e e n a s the number of ways of picking k 
integers among 1, 2, 3, ..., 2n-2 by the following two-step procedure: 

Step 1: Select k pairs of integers of the form {2s-1,2s} among 1, 2, 3, ..., 2n-2. This 
can be done in (n~l>\ ways. 

Step 2: Pick an integer in each of the k pairs selected. This can be done in 2k ways. 

While this procedure clearly generates any set of k integers chosen among 1, 2, 3, ..., 2 ^ - 2 
in such a way that no two of them are consecutive, it does, however, also allow picking both inte-
gers 2/ and 2/ +1. When this happens, we shall say that the event 4 has occurred. Note that, in 
such a case, the index i can take the values 1, 2, 3, . . . ,w-2. Also, when both events 4 and 4 
(*i * '2) o c c u r within a given selection of integers, the indices z\ and i2 are not consecutive. 
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It thus remains to show that the number of elements corresponding to the event . ^ u ^ u -
^An_2 is given exactly by the subtrahend on the right-hand side of (**). Such a proof follows 
directly from the usual "inclusion-exclusion technique" for counting the elements in a union of 
events: one first (J = 1) adds up the counts in each Ai9 one then (J = 2) subtracts the counts in 
each 4j ^ 4 2 (h <h)> then (J = 3) one adds the counts in each Ai ^ 4 ° 4 (h < h <h)> etc-

Let us consider, for instance, the case7 = 1. f"~,1-1) is the number of ways of selecting an 
index i (that is, two integers) so that the event Ai has occurred. In order to complete a choice of 
kintegers, one first selects k-2 pairs among the remaining integers [Step 1—this can be done in 
\"k-~22) ways], and then —Step 2—picks one integer from each of these pairs (which can be done 
in 2k~2 ways). 

A similar argument applies generally for any j > 1. One must first note that (n~\-A is the 
number of ways of selecting the indices ix < i2 < • • • < ij in such a way that no two of them are 
consecutive (2/ integers are thus chosen through this stage). Then, as above, {"l]r2

2A counts the 
number of ways of selecting k-2j pairs among the remaining integers—Step 1—and 2k~2j is the 
number of ways of performing Step 2. 

The theorem is thus proven. • 

Taking b = 1 in the above theorem, we have the following equalities: 
a) K1S2„ = njJSn9 n>l 

Hence, the (2/1)* Fibonacci number can be calculated by using a base-three interpretation of the 
IIth Fibonacci diagonal, whereas the (2n -1)* Fibonacci number can be calculated via a base-
three interpretation of both the /1th and the (n-l)th Fibonacci diagonals. For instance, the 6th 

Fibonacci number is 8 and it can be obtained from S3 = (1,1) as 1-32 —1-3°. The 11th Fibonacci 
number is 89, which can be obtained via the diagonals S6 = (1, 4, 3) and S5 = (1, 3,1): one has here 

^-3i61?6 = 1.35-4-33+3-31-144 
and 

^3i6i?5 = 1.34-3-32+l-3°=55. 

3 : FIBONACCI DIAGONALS IN PASCAL'S TRIANGLE MOD 2 

The Theorem of section 2 tells us how certain computations regarding Fibonacci diagonals 
can be "lifted" to computations done just half-way down Pascal's triangle. Such a theorem is in 
the same spirit as the results presented in Hodgson [4] with respect to Pascal's triangle mod 2. 
We now briefly recall these results. 

Let us denote by Tn9n>l, the vector representing the n^ Fibonacci diagonal mod 2. These 
diagonals have already been studied in Hodgson [4] where numbers Hn9 analogous to Gould's 
numbers, have been introduced. In our notation, we have Hn = 7t2fn. The following calculation 
rules for H„ were proven in Hodgson [4] (see Proposition 6.1 therein): 

H2h=22 "\ (i) 
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H2h+u = Hu• 22*"1 + H2h_u for 1 < a < 2*. (ii) 

(The reader should be aware that the slightly different form of those rules in [4] is due to the 
numbering of diagonals there starting with n = 0.) The proof of these recursion formulas is 
essentially based on an algebraic translation of the "geometry" of Pascal's triangle mod 2, that is, 
the very interesting way in which the O's and the l's are distributed (the reader should write down 
the first n rows of that triangle and observe the nice pattern obtained). 

We now end this paper by describing techniques that allow the computation of both K2Tn and 
n{Tn in a most direct fashion. In opposition to the above formulas that relate the value of a cer-
tain Hn to powers of 2 and previous Ht\ the procedures below give the value of both Hn -^2^n 

and n{Tn by working directly on the index n. Figures 2 and 3 illustrate the simplicity of these 
methods, whose validity is a consequence of the following discussion. 

For convenience, let us introduce the notation tn to represent the base-two representation of 
Hn. (Note that tn can be simply seen as the vector fn with the commas removed.) Formulas (i) 
and (ii) now become 

tlh = 1000.. .0 (2h~l - 1 zeros), (i1) 

r2,+M = rM000...0^_M forl<;i#<2\ (ii) 

where the number of intermediate zeros is such that the string 000...Of A is made of exactly 2h~l 

digits. As an example, let us compute t29. Since it is trivially verified that t3 = 11, we thus have 
t29 = tl3 000000/3 

= t5 00*3 oooooo i i 
= ^3 001100000011 
= 111001100000011 

[the number of intermediate zeros introduced at each computation step follows from (ii')]. 
The preceding calculations can also be conveniently displayed as in the tableau of Figure 1. 

In general, given n = 2h +u, we shall need a tableau made of h rows, each one containing 2h 

positions to be ultimately filled at the last step of the procedure. Rows are indexed by decreasing 
powers of two that serve to split each number appearing on the preceding row. At the row of 
index 2k, any number (from row 2k+l) of the form 2k + v becomes split into v and 2k - v , while 
any number w <2k splits into 0 and w. This procedure may be better grasped by displaying the 
entries as in the tree diagram given in Figure 2. (For odd n, this algorithm directly gives tn at its 
last step of computation. However, because of parity considerations, the last row will, for even n, 
always contain O's and 2's: we note that tn can then be obtained by merely replacing each digit 2 
byal . ) 

We finally present a technique for the computation of n{Tn (compare with Glaisher's rule for 
the calculation of n$n mentioned in the Introduction). Note that we are now interested solely in 
the total number of l's, and no longer in their exact position. All amounts to finding how one can 
build n using only powers of two—or, if one prefers, to what extent n is "far" from being itself a 
power of two. For this purpose, we introduce a notion of weight. The diagram of Figure 3 (for 
n = 29) helps to clarify the discussion. Let us read that diagram from the bottom up. Powers of 
two (here, 16 and 32) are considered to be of weight 1. Then 24, being halfway between powers 
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of two, is of weight 2 (= 1 + 1). Since 28 is halfway between 24 and a power of two, it is given 
weight 2 + 1 = 3. Continuing in this manner, 29 receives a weight of 3 + 4 = 7: this weight is also 
the value of TTJ^ , the total number of l's appearing in t29. (It is usually more convenient to 
consider Figure 3 as being built from the top down, with the weights being incorporated into the 
diagram at the end of the process.) The general validity of this procedure follows from recursive 
applications of formulas (i) and (ii') above. 

29 

13 

2 J . IJ_IJ_IJ . IAI^ IJ_IJ . I_OI^ . I^ . I_Q. I_O. I -O. IJLIJL 

Flgure 1 

Figure 2 

Figure 3 
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