AN "ALL OR NONE" DIVISIBILITY PROPERTY FOR A CLASS OF FIBONACCI-LIKE SEQUENCES OF INTEGERS

Juan Pla

315 Rue de Belleville, 75019 Paris, France (Submitted September 1992)

In this note, we prove the following theorem.

Theorem: Let u_n be the general term of a given sequence of integers such that $u_{n+2} = u_{n+1} + u_n$, where u_0 and u_1 are arbitrary integers. Let x be an arbitrary integer other than -2, -1, 0, and 1. Let D be any divisor of $x^2 + x - 1$ other than 1. Then, the sequence $w_n = xu_{n+1} - u_n$, where $n \ge 0$, is such that:

- (a) D divides every w_n ;
- (b) D divides no w_n .

Proof: It is a well-known fact [1] that

$$u_{n+p+1} = F_{p+1}u_{n+1} + F_p u_n, \tag{1}$$

where F_p is the p^{th} Fibonacci number. Considering the following product of two polynomials in the variable x,

$$(x^{2} + x + 1) \sum_{p=0}^{p=n} F_{p+1} x^{p},$$
(2)

and taking advantage of the fundamental properties of the Fibonacci sequence, we can see that most of the terms in (2) vanish when we develop the product, to obtain

$$(x^{2} + x + 1)\sum_{p=0}^{p=n} F_{p+1}x^{p} = -1 + x^{n+1}((1+x)F_{n+1} + F_{n}).$$
(3)

Since x is an integer, the two integers $x^2 + x - 1$ and $k_n = (1+x)F_{n+1} + F_n$, by (3), cannot share any common divisor. That is,

$$(x^{2} + x - 1, k_{n}) = 1, \ n \ge 0.$$
(4)

Letting

$$\begin{cases} k_p = (1+x)F_{p+1} + F_p, \\ k_{p-1} = F_{p+1} + xF_p, \end{cases}$$
(5)

we have a linear system whose determinant is $x^2 + x - 1$. Since we assume that x is an integer, and that this polynomial has no integer as a root, this means that the system (5) has one solution, which can be expressed as

$$\begin{cases} (x^{2} + x - 1)F_{p+1} = xk_{p} - k_{p-1}, \\ (x^{2} + x - 1)F_{p} = (1 + x)k_{p-1} - k_{p}. \end{cases}$$
(6)

[JUNE-JULY

226

If we substitute the values of F_{p+1} and F_p from (6) into (1), we have

$$(x^{2} + x - 1)u_{n+p+1} = (xk_{p} - k_{p-1})u_{n+1} + ((1+x)k_{p-1} - k_{p})u_{n}$$

= $(xu_{n+1} - u_{n})k_{p} + ((1+x)u_{n} - u_{n+1})k_{p-1}.$ (7)

Recalling that $w_n = xu_{n+1} - u_n$ and that $u_{n+1} = u_n + u_{n-1}$, we can substitute these values into the right-hand side of (7) and by simplifying obtain

$$(x^{2} + x - 1)u_{n+p+1} = w_{n}k_{p} + w_{n-1}k_{p-1}.$$
(8)

Now let D be any divisor of $x^2 + x - 1$ (except 1) and assume D divides w_n for some n. Since, by (4), D does not divide k_p , we see that D divides w_{n-1} . It is now obvious, by induction, that all the terms of $\{w_n\}$ are divisible by D. Similarly, if there exists one w_n that is not divisible by D, then there is no w_n that is divisible by D.

Examples:

a) The first interesting value is x = 2, for which $x^2 + x - 1 = 5$, and

$$w_n = 2u_{n+1} - u_n = u_{n+1} + u_{n-1}.$$

Letting $u_n = F_n$, we have $w_n = L_n$, where L_n is the n^{th} Lucas number. Since 5 does not divide $L_0 = w_0$, we have established the well-known fact that no L_n is divisible by 5. On the contrary, if we let $u_n = L_n$, then $w_n = L_{n+1} + L_{n-1}$. Here, all terms of w_n are divisible by 5, since $w_1 = 5$.

b) A consequence of this "all or none" property is that no Fibonacci-like sequence of integers u_n exists such that $F_n = u_{n+1} + u_{n-1}$ for all *n* because some of the Fibonacci numbers are divisible by 5 and some are not.

c) When $x^2 + x - 1$ is composite, it is easy to build sequences displaying the "none" property for some of the divisors and the "all" property for the other ones. For instance, when x = 7, $x^2 + x - 1 = 55 = 5*11$ and $w_n = 7u_{n+1} - u_n$. With $u_0 = 3$ and $u_1 = 2$, we get $w_0 = 11$, which means that w_n displays the property "none" for 5, and the property "all" for 11.

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to the editor for his assitance in restructuring the original version of this paper and to the referee for his/her many valuable suggestions which also improved the quality of this article.

REFERENCE

1. A. F. Horadam. "A Generalized Fibonacci Sequence." Amer. Math. Monthly 68.5 (1961): 455-59.

AMS Classification Numbers: 11B37, 11B39