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1. INTRODUCTION 

Several Interconnection networks have been proposed in literature for interconnecting com-
puting elements. The interconnection network usually forms a regular pattern, which is exploited 
by the algorithms running on the network. Some of the commercially available networks are the 
hypercube, mesh, etc., which are highly regular. The advantage of using such regular networks is 
that the algorithms written for one network can be extended with minimal effort to larger versions 
of the same network. However, networks like the hypercube, mesh, etc, have one significant dis-
advantage; they do not scale in increments of one. A hypercube scales in exponents of two, and a 
mesh scales in order of n or k, in an n x k mesh. 

A tree is the cheapest interconnection network but has unacceptably poor communication and 
fault-tolerant properties. On the other hand, the complete graph Kn is highly reliable but is 
extremely expensive. Some of the desirable properties of interconnection networks are high fault 
tolerance, small diameter, small degree, high connectivity, symmetry/regularity, etc. (most of 
which are conflicting properties). 

A class of networks called Iterative networks were proposed to address some of the draw-
backs of commercially available networks [3, 4, 7, 8, 12]. Iterative networks can be scaled in 
increments of one. In fact, they can scale by any k, where k > 1. Interconnection networks are 
often modeled as undirected graphs, where vertices correspond to processor-memory nodes, and 
edges represent full-duplex communication links between pairs of nodes. An iterative network of 
n nodes is a subgraph of the network with n + \ nodes. The algorithms running on iterative 
networks require minimal modifications when extended to scaled versions of the network. This is 
a significant advantage over networks like hypercube, mesh, etc. 

Some of the proposed iterative networks that have appeared in literature are mentioned 
below. Stirling networks [3] are defined using Stirling numbers of the first kind. Rencontres net-
works [4] are defined based on rencontres numbers. Pascal networks [7] are defined using the 
Pascal triangle. Several others, like Steinhaus networks [12], Circulants [2], Topelitz networks 
[8], etc., have also been proposed in literature. All of these have some of the desirable properties 
of interconnection networks, but also have certain drawbacks. So the search for new inter-
connection networks for various classes of problems continues. 

* Supported in part by the National Science Foundation under Grant Number CDA-8805910, 
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In this paper we introduce a new class of iterative networks using Fibonacci numbers, which 
we call Fibonacci networks. We investigate their graph-theoretic properties and study their suit-
ability for implementing multicomputer systems. The paper is organized as follows: In section 2 
we show how Fibonacci networks are constructed. In section 3 we explore some of the proper-
ties of these interconnection networks. We show that Fibonacci networks have most of the 
properties desirable in an interconnection network except that it has too many links making it 
expensive. We then show how the number of links can be reduced while still maintaining the 
basic structure of the network. We also explore the properties of the modified network and show 
that it still retains most of the desired properties of interconnection networks. In section 4 we 
show that routing can be accomplished very efficiently in Fibonacci networks. In section 5 we 
show how other networks can be embedded onto Fibonacci networks of comparable size. In 
section 6 we design some of the basic algorithms, like finding a minimum spanning tree, that can 
be implemented on Fibonacci networks. Finally, we present some concluding remarks. We have 
used standard graph-theoretic notation throughout this paper [6]. All logarithms are with respect 
to base 2 unless specifically mentioned otherwise. 

2. FIBONACCI NETWORKS 

Fibonacci networks are a class of iterative/recursive networks constructed as described 
below. Let fib(q) denote the q^ Fibonacci number Fq (0 and 1 being the 0th and 1st Fibonacci 
numbers, respectively). Let FT(r, k) = Jib(k + YJiZl i) for 0<k <r. Annxn symmetric matrix 
is called & Fibonacci Matrix FMp(n) of order n if its main diagonal entries are all 0 and its lower 
triangular entries (and, therefore, upper also) consist of the {0, 1} predicate values {FI(n-\ k) 
(mod/?) ^0 ) , wherep is usually a small prime. (Later we will show how this definition can be 
extended whenp is a set of primes.) Let 

Then, by definition, 

and hence, 

Mj = & i ) * element of FMp(n) e {0,1}, 

Aj = ft jyh e l e m e n t o f FT(n, k) GN. 

MP,j=(fU,j (modp)*0\ 

x=Q 

or, alternately, 

fflj = \fiiQ ^f 2)+,/|(mod/>)*0|, y = l,2,...,i-l. 

An undirected simple (without parallel edges or self loops) graph that has FMp{n) as its 
adjacency matrix is called a Fibonacci Graph FGp(n) or order n. The vertices are numbered in 
the same order as the rows of FMp(n). Figure 1 depicts Fibonacci Graphs FG2(l) to FG2(S); 
Matrix 1 shows the matrix FM2(S). 
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e o 

FG2(1) FG2(2) FG2(3) FG2(4) FG2(5) 

FGZ(6) FG2(7) FG2(8) 

FIGURE 1. Fibonacci Graphs: FG2(1)-FG2(&) 

fO 1 1 1 1 1 1 O 
1 0 0 1 1 0 1 1 
1 0 0 0 0 1 0 0 
1 1 0 0 1 1 1 1 
1 1 0 1 0 0 1 1 
1 0 1 1 0 0 0 0 
1 1 0 1 1 0 0 1 
1 1 0 1 1 0 1 0 ^ 

MATRIX 1: FM2(S) 

A Fibonacci network with n processors and prime p Is a mapping of the graph FGp(n). The 
vertices of the graph correspond to the processors and will be called nodes. The edges cor-
respond to the communication links between nodes. By definition, FGp(n) is a subgraph of 
FGp(n + \). Hence, Fibonacci networks can be constructed incrementally. Addition of a node 
causes new links to be added from the new node to some of the existing nodes. None of the 
existing links are deleted. 

Below, we list some of the symbols that are used throughout this paper. 

vi -» v • = Node vi is adjacent to node Vj. 
vf b-» v • = Node vi is not adjacent to node v.. 

fib(ri) = The «* Fibonacci number Fn. We redefine this notation for convenience. 
v;. = Vertex i in FGp(n) or node i in the corresponding network. 

(dkdk_x ...dldQ)= Decimal representation of a positive integer. d0 is the least significant 
digit and dk is the most significant digit. 

Diap(n) = The diameter of the graph FGp(n). 
Diap

f{n) = The fault diameter of the graph FGp{n). 
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degp(Vj)= The degree of vertex vt. 
pktm = Message packet m 

dest{pktm) = Destination node of packet m. 
ep(n) - The number of edges in the Fibonacci network FGp{ri). 

sp = The smallest integer greater than 0 such that/? divides fih{sp). 

Often we will omit the superscript/?, in which case/? is assumed to be 2. 
It should be noted that this construction is different from the construction of Fibonacci Cubes 

[11] which also use Fibonacci numbers in their construction. However, Fibonacci Cubes are more 
like the hypercube and scale in increments equal to the Fibonacci numbers. The construction in 
[11] involves representing each node by a Fibonacci bit representation and determining adjacen-
cies by differences in bit patterns. 

3, PROPERTIES OF FIBONACCI NETWORKS 

We first introduce some properties of Fibonacci numbers with respect to divisibility by primes 
and the degree of a vertex. The following lemma will be useful later. 

Lemma 1: Prime/? divides fib(J xsp) for all / > 0. 

Proof: We prove the lemma by induction on i. The base case is satisfied by definition of s 
By hypothesis, let us assume that p divides fih(j x sp) for some j . To prove that p divides 
Jib((j + l ) x j ) , w e invoke the following [9]: 

fib(n + *) = fib(k) x fibin +1) + flb{k -1) x fib{n). 

Substituting the above in fib({j +1) x s ), we get 

ftb(J xsp+sp) = fib{sp) x fib{j x sp +1) + fib{sp -1) x ftb(J xsp). 

Since/? divides fib{sp) by base case, and /? divides fib{jxsp) by hypothesis, p divides 
fib((j + l) xsp). A stronger property can be inferred immediately that p divides fib(m) if and 
only ifm = jxsp for some integer/, since s is the smallest integer for which/? divides fib(sp) • 

We define yet another property of sp. 

Theorem 1: Let p = (dkdJc_l ...d^) be a prime less than 40; if p has t decimal digit repre-
sentation, then df = 0 for all i > (t -1). 

(/? -1) ifd0 = l or (d0 - 9 and dx is odd), 
P i f^0=5, 
(/? +1) if (d0 = 2) or ((dQ = 3 or 7) and di is even), 
(/? +1) / 2 if ((d0 = 3 or 7) and (dx is odd)), 
(/? -1) / 2 if ((d0 = 9) and (dx is even)). 

Proof: We have verified the preceding relation for all primes less than 40 (using Mathe-
matical In this paper we will limit ourselves to primes/? < 10 and will, therefore, assume this 
theorem to be true. • 

* />=< 
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Fibonacci Networks with p = 2 

We now introduce some properties of Fibonacci networks when/? = 2. From the previous 
section it is clear that s2 = 3. We will assume the superscript to be 2 whenever omitted, for con-
venience in notation. 

Proposition 1: The degree of a node vk, deg2 {vk ) in FG2 (ri), is given by 

e{k)-e{k-\) + X 
i=k+\ 

n fff i-2 \ 

V J=° ) 
(mod 3) * 0 

Proof: e(k) - e(k -1) sums all the " 1" entries in row k from column 1 until the main diag-
onal of the adjacency matrix FM2. The rest of the expression sums all the "1" entries in column k 
starting from row k + \ until row n of FM2. Since s2 = 3, we know that 

e(k) = s(k)- s(k) where s(k) = (kx(k-V))/2. 

Substituting for e{k) and e(k -1) in the above equation and simplifying, we get 

deg2(vk) = (k-l)- k(k-l) 
+ 

( * - ! ) ( * -2 ) + £ (((/2-3i + 2yfc + 2) (mod6))*o). D 
J i=k+l 

For k < i, matrix entry f2
k is "1" if and only if 

(((/2-3i+2 + 2Jt) (mod6))^0). 

We can now construct the following modulo 6 table for k < i. 

TABLE 1. Connectivity of FM2 

i 

1 
2 
3 
4 
5 
6 

i 2 

1 
4 
3 
4 
5 
0 

-3/ 
-3 

0 
-3 

0 
-3 
0 

fk(i) = i2-3i + 2k + 2 
2k 
2k 

2k+ 2 
2k 
2k 

2k+ 2 

Proposition 2: Node v3/+1 is adjacent to node v. for all j > (3/ +1). 

Proof: We first prove that vt -> v • for all j > 1. Since s2=3, the result then follows for all 
v3/+i • ^y definition, vx —> vi if and only if (fih(l + Z^io m) (mod 2)) ^ 0. Therefore,it suffices to 
prove that the value val(i) = (l + Y!~lQ rn) is not divisible by s2 - 3 for any / > 1. We prove this 
by contradiction. Let us assume that (((i -1) x (/' - 2)) / 2 +1 +1) is divisible by 3 for some /'. 
Thus, i2 - 3/ + 4 must be divisible by 3 for some /. Clearly if, for some /, 3 divides (i2 +1), then 3 
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cannot divide i2 (hence, cannot divide /). Thus, we have i2 = 1 (mod 3) for some i by Fermat's 
theorem. Therefore, i2 +1 = 2 (mod 3); hence, 3 does not divide (i2 +1) for any integer /'. D 

Proposition 3: Node v3/+1 is adjacent to node v for ally, if/ (mod 3) ^ 0. 

Proof: For j > ( 3 / + l), the proof follows from Proposition 2. For J < ( 3 / + 1), the entry 
>32

/+1 j is " 1" if and only if ((j + (3/"f3/)) (mod 3) * 0); the proof follows. • 

Proposition 4: Node v3k+2 is adjacent to node vt if and only if (/ (mod 3) ̂  0). 

i¥oo/> For entry fm2
3k+2 to be "1," ((3£ + 2 + (/~2f~1)) (mod3)*o). On simplifying, we 

need to prove that ((/"2 - 3/) (mod 3) * 0). This is clearly true if and only if (/* (mod 3) * 0). D 

Proposition 5: Node v3A: is adjacent to node v7 (where / > 3k), if and only if/ = 3j for somej > A\ 

Proof: For node v3it to be adjacent to node vi9 u3k + (l~2f~l)) (mod 3) ̂  Oj, when i = 3y for 
some j > k. On simplifying, we need to prove that ((/' - 3/ + 2) (mod 6) ̂  0) for / = 3/. On sub-
stituting for / = 1, 2, ..., 6, we find that vf. —» v3k if and only if/ = 3/ for somej > &. D 

Proposition 6: Let £(//) be the number of edges added to FG(n -1) to get FG(n). Then 

[2x(f)-l if// (mod3) = 0, 

r(/i) = j 2 x [(f)] - 1 if n (mod 3) = 2, 

12x[(f)]-2 if// (mod3) = l. 

Proof: The proof follows directly from the definition of FG2 (n) and Lemma 1. • 

Proposition 7: The number of edges e(ri) in the Fibonacci network FG2 (n) with n nodes is 
given by 

ff x(w-l) if w (mod 3) = 0, 
e(//) = < e(/? -1) + t(n) if // (mod 3) = 1, 

I e(n - 2) + ?(//) + /(// -1) if n (mod 3) = 2. 

Proof: From Proposition 6 and Proposition 1, we know that e(3k) = e(3k - 3) + 6(& -1) + 2. 
Solving this recurrence we get 3(3k) = kx(3k-l). The result follows from this equation and 
Proposition 6. D 

Proposition 8: The maximum degree of a vertex in FG{n) is n - 1 . 

Proof: The proof follows from Proposition 2. The degree of vertex vx is n -1. • 

Proposition 9: The diameter Dia(n) - 2. 

iVo^- The ^ ( V j ) = 71 - 1 . This means that the diameter of FG(n) is < 2. • 
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Proposition 10: Node v3 has minimum degree in FG(n) forn>3. 
Proof: From Proposition 3, we know that the degree of nodes v3/+1 increases by at least 2 

for every 3 nodes added to the network. From Proposition 4, the degree of nodes v3/+2 increases 
by 2 for every 3 nodes added in the network. From Proposition 5, the degree of nodes v3/ 

increases by only 1 for every 3 nodes added in the network, when the nodes have numbers greater 
than 3/ and increases by 2 otherwise. So the node with minimum degree is the smallest v3i node, 
which is v3 and its degree is [f J. D 

Proposition 11: The node connectivity of FG(n) = deg(v3). 

Proof: To prove that there are at least [f J node-disjoint paths between any 2 nodes (let us 
say, vi and v.) of FG(n)9 we show that both vt and Vj can reach all the nodes v3q+l, where 
q < (deg(v3) -1), either directly or through a nonintersecting set of node paths or vz -> v.. Let 
deg(y3)-l = k. 

Case 1. Integers / and 7 are both greater than 3A + 1. By Proposition 2, both vt and Vj are 
adjacent to v3q+l for q e{0,1,..., k}. Therefore, there are at least k + \ node-disjoint paths 
between v, and Vj. 

Case 2„ Integers /' andy are both less than 3k +1. We have three subcases to prove. 
a. If / = 3r +1 or i = 3r + 2, then, from Propositions 3 and 4, we know that vt —» v3q+l for 

q = {0,l,. . . , * } . 
be If / = 3randv- is not adjacent to v3q+l for some q<k, then, from Proposition 5, 

vi —» v3q+3 and v3^+3 —> v3q+l. Likewise, we can prove for Vj. 
€• If Vj and v,- are not adjacent to the same v3q+l for some q, then, by Proposition 5, 

v- —•> v • 

Case 3. One of/ or j is less than 3& + 1 and the other is greater. This is just a subcase of 
Cases 1 and 2. If the node number is less than v3k+1, then Case 1 holds, and if it is greater, Case 2 
holds. 

The proof follows from these three cases. • 

Proposition 12: The fault diameter Diaf (n) - Dia(n) +1. 

Proof: First, we show that the network remains connected in the event of deg(v3) -1 node 
failures. We then show that the diameter of the fault-free network increases by at most 1. In the 
worst case, nodes v3q+l all fail where q={0,l,..., deg(v3) - 2} since they are the nodes with maxi-
mum degree. We show that every node v, can reach v3x+1 where x - deg(y3) -1. We have two 
cases to consider: 

Case 1. / > (3x + 1). In this case we know, from Proposition 2, that vi -> v3x+1. 
Case 2. / < (3x +1). In this case, if / = 3r +1 or 3r + 2 for some r > 0, then, from Proposi-

tions 3 and 4, vi —> v3x+l. If / = 3r for some r > 0 andy = 3y + 2 for somej > 0 as shown in the 
connectivity proof. 

Thus, the fault diameter Dia^- (n) = Dia(ri) +1. D 
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Proposition 13: FG(ri) is nonplanar for all n > 1. 

Proof: The graph FG(7) has K5 as a subgraph (nodes: v1? v2, v4, v5, and v7). Therefore, by 
Kuratowski's theorem, the proof follows since FG(n + l) is a subgraph of FG(ri) for all integers 
n>7. D 

Fibonacci Networks with p = 2 and 3 

When/? = 2 as shown in Proposition 7, the number of links in the network is very high (order 
n2). A simple way to reduce the number of links while still retaining most of the properties of the 
network is to modify the definition of FMP (n), where p is a set of primes {Pi,p2,--,Pk}- So, in 
this case, we have 

/ 
X = fib 

i-2 \ 

m=0 J 
and 

finpf j = (X (mod/?j) * 0) x (modp2) * 0) x ••• x (X (modpk) * 0), for/ </. 

The rest of the definitions remain the same. The above construction deletes some of the links in 
the original network. FMp{ri) is a symmetric n x n matrix whose main diagonal entries are all 0, 
and its lower triangle (and, therefore, upper also) consists of entries finpfj The graph which has 
FMp{ri) as its adjacency matrix is represented by FGp(n). The graphs FG{2,3}(1) through 
FG{2'3}(iO) are shown in Figure 2 and the matrix FM{2,3}(10) is shown in Matrix 2. For all 
n > 0, FG{2'3} (n) is a subgraph of FG2 (n). 

FG{2'3>(1) FG{2'3>(2) 

FG{2'3>(7) 

FG{2>3}(3) 

FG{2>3)(8) 

FG{2,3)(4) FG{2'3>(5) 

FG{2,3)(9) 

FG{2>3}(6) 

F G R 3 } (10) 

FIGURE 2. Fibonacci23 Graphs: FG{2>3](t)-FG{2'3](W) 
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' o i i o i i o i i i\ 
0 0 1 0 0 1 1 0 1 
0 0 0 0 1 0 0 1 0 
1 0 0 1 1 1 1 0 0 
0 0 1 0 0 0 1 0 1 
0 1 1 0 0 0 0 1 0 

0 1 0 1 0 0 0 0 1 1 
1 0 1 1 0 0 0 0 0 
0 1 0 0 1 1 0 0 0 
1 0 0 1 0 1 0 0 0y 

Matrix 2: FM2>3(W) 

For the remainder of this subsection, the superscript {2, 3} is assumed and is omitted for the 
sake of clarity. From Theorem 1, we know that s2 = 3 and $3 = 4. Before exploring the connec-
tivity of this modified network, we first prove a lemma that will be useful in later proofs. 

Lemma 2: fib{n) is divisible by 12 if and only if n is divisible by 12. 

Proof: We prove the lemma by induction. The base case is clearly true since fib(\2) = 144. 
By hypothesis, let fih(\2 x k) be divisible by 12. We must prove that 12 divides fib{\2 x(k +1)). 
But from [9] we have fib(U x(k +1)) = 144 x fih{\2 x k +1) + 89 x fib(\2 x k). Since 12 divides 
fih(\2 x k) by hypothesis, the lemma follows. D 

s{n) 
3 

- s(n) 
4 

+ s(ri) 
~\2 

Proposition 14 Let s{n) = SJLj /', then 

e(n) = s(n) -

Proof: The total number of edges is equal to the number of" 1" entries in the lower triangle 
of FM{2,3}(n). Since s2 = 3 and s3 = 4, the above expression follows from the principle of inclu-
sion and exclusion. D 

Proposition 15: The degree of a node vk, deg{2-3}(vk) in a network FG{2,3}(n), is given by 

e(k)-e(k-l)+^((X (mod3) * 0) & (X (mod4) * 0)), 
i=k+i 

whereX = (£ + i ; - 2
0 7) . 

Proof: This follows using the same outline as shown in the proof of Proposition 1. D 

For k </', the matrix entry ftnpf^ is "1" if and only if 

(((/2 - 3/ + 2 + 2k) (mod 6) * 0) & ((/2 - 3/ + 2 + 2k) (mod 8) * 0)). 

The expression inside the summation forms a field modulo 24 and the degree of nodes increases 
symmetrically with the addition of every 24 nodes (see Table A-l in the Appendix). 
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Proposition 16: If a node v. H-> v3/+1 for some j > (3? +1), then Vj h-> v3i+4 and vice versa. 

Proof: Let X = ((3/ +1) + Z{Ii k). We need to prove that X+ 3 is not divisible by 4 if Vj K> 
v3/+1. We know that if v. h-> v3/+1 for some j > (3/ +1), then, by Proposition 2, X must be divisi-
ble by 4. Since Xis divisible by 4, X+ 3 cannot be divisible by 4. Hence, Vj K> v3i+4 if v} K> v3/+1. 
The vice versa proof follows similarly. • 

Proposition 17: The maximum degree of a node in FG(n) = deg(vx) = deg(v4). 

Proof: This follows from Proposition 15. The degree of node vx for every 24 nodes is 
deg(vl) = deg(v4) = llk,wherQk = l%\. • 

Proposition 18: The diameter ofFG(n), Dia(n) - 3. 

Proof: The proof follows from Proposition 16. 

Proposition 19: The minimum degree of a node in FG(n) = deg(v3). 

Proof: This follows from Proposition 15, using the same argument as in the proof of Propo-
sition 10. The degree of node v3 for every 24 nodes is deg(v3) - deg(v9) = l + 6k, where [^J. D 

4. ROUTING 

Routing in Fibonacci networks can be preformed very efficiently because of their high con-
nectivity. We consider the case in which/? = 2. We exploit the fact that nodes v3/+1 h-»Vj for all 
7>(3i + l). 

Input: A one-to-one permutation showing source and destination nodes. 
Output: A path for each packet to be routed. 

Step 1. Each node Vj routes its packet to node v7, where ((/ = max(3& +1)) < j). 
Step 2. Each v, that receives a packet in Step 1 routes the packet pktm to v£ such that 

((I = max( 3r +1)) < dest{pktm)). 
Step 3. Each vi that receives a packet in Step 2 routes the packet pktm to dest(pktm). 

The algorithm clearly runs in constant time. The number of packets at any node at any given 
instance of time is at most 3, assuming that each processor node works in synchronous lock step. 

When/? = {2, 3}, the routing algorithm requires only a minor modification, as shown below. 
If Vj h-» v;, where ((/ = max(3& +1)) < j), then, by Proposition 12, Vj h-» v3lc+4. So, if Vj h-> v3k=l 

for some v. in the previous algorithm, it reroutes through v3k+4. This increases the routing 
complexity by 2 steps for certain packets and the maximum number of packets queued at any 
node at any given time is at most 6. The algorithm still runs in constant time, with constant queue 
lengths. We have shown that a network with/? = 2 can be simulated by a network with/? = {2, 3} 
with a loss of speed by a constant factor only. 
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5, REDUCING THE TOTAL NUMBER OF LINKS 

In Section 3 we showed how we could reduce the total number of links by using a higher 
prime number to prune some of the links. By using prime '3,' the number of links was reduced by 
17%. In this section we describe three methods of further reducing the total number of links 
while maintaining the basic structure of the network. 

1. Using higher primes: We follow the same technique as described in the construction of 
Fibonacci networks with primes 2 and 3. The following table shows the effect of using higher 
primes on the total number of links. 

TABLE 2e Effect of Using Larger Primes 

Primes Used 
3 

3,5 
3, 5, 13 

3 ,5 , 13,7 

Percentage of Links Pruned 
17 
27 
32 
35 

New Diameter 
3 
4 
6 
7 

The number of links reduces by 35% from FN by using four more primes. The number of 
links pruned is computed using the principle of inclusion and exclusion, as shown in the proof of 
Proposition 14. The diameter results follow, using the argument given in the proof of Proposition 
18. It should be noted that the primes/? were selected based on the smallest s values (sl3 <s7 
<sn). The diameter, which reflects the slow-down in the routing time, increases almost linearly 
with the number of primes used. Therefore, the routing time slows down by a factor of 7, while 
35% of the links in iWhave been pruned. We observe that using primes higher than 13 results in 
diminishing returns. 

2* Bounding maximum degree to log(#i): The second technique that can be used is to 
bound the maximum degree of each node to log(w) (or any predefined constant) for n > c (where 
c is a suitable constant). Therefore, for a network of size less than c, the network is identical to 
FN. For n> c"l" entries in the matrix are set to "0" if the degree of the corresponding node has 
already reached log(n). It can easily be shown that the diameter of this network is 0(log(«)) and 
the total number of links is e(ri)<nxlog(ri). This network is quite similar to the hypercube. 
However, this technique does not preserve the basic structure of the Fibonacci network. The 
routing algorithm will have to be appropriately modified. 

3„ Cube connected Fibonacci network: The third technique is to replace each node in FN 
by a cycle of length equal to the degree of the node (just as is done in Cube Connected Cycles). 
This will increase the diameter of the network while reducing the overall degree. However, a 
problem with this approach is that the network is no longer scalable by one node. 

6. EMBEDDING OF VARIOUS TOPOLOGIES 

Claim 1: A complete binary tree of k levels (containing 2* - 1 nodes) is a subgraph of FG(3 x 
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Proof: We show that a complete binary tree of k levels can be mapped on FG(3 x 
(2k~l -1)). From Proposition 2, we know that v3l-+1 -> Vj for all j > (3/ +1). As shown in Figure 
3, we assign the nodes of level 1 through level k-l processor nodes v3.+1 in order, where 
7 e {0,1,... > (2k~l - 2)} Each node v3J+l in level k - 1 is adjacent to nodes v3y+2 and v3j+3, which 
form the leaf nodes. The number of processors required up to k-l levels is 3 x (2k~l - 1 ) - 2 . 
Therefore, the last leaf node processor required is 3 x (2k~l -1) 

11 12 14 15 17 18 20 21 

FIGURE 3. Embedding a Complete Binary Tree on FN 

Claim 2: A complete ringed binary tree of k levels (containing 2k -\ nodes) is a subgraph of 
FG(3x(2k-l)-2). 

Proof: We follow the same outline as in the previous proof. We construct all k levels the 
same way as we construct k-l levels in the previous proof. From Proposition 2, we know that 
v3j+l —> Vj for all j > (3? + 1). As shown in Figure 4, we assign the nodes of level 1 through level 
k, processor nodes v3,+1 in order, where j = {0,1,..., (2k -2)}. 
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FIGURE 4. Embedding a Ringed Binary Tree of FN 
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Claim 3: A rectangular mesh of size £ + k is a subgraph of FG(\^]). 

Proof: We show how the mesh can be embedded on FG(n). All nodes vi such that / 
(mod3) ^ 0 can be arranged in increasing order, row-wise. The horizontal adjacencies are guar-
anteed by Propositions 2 and 5 above, and the vertical adjacencies are guaranteed by Proposition 
2. Only every third node v3J is not used in the embedding. Therefore, the number of nodes used 
is p—^-l An example embedding of a 4 x 4 mesh is shown in Figure 5. 

i 
Q-

2 
- Q -

4 
-Q-

76 s-6 ^ — 6 1 1 

5 
-Q 

1 3 6 — % #*—617 

O-
19 20 

-o-
22 23 

FIGURE 5. Embedding a 4 x 4 Mesh on FN 

Claim 4: A complete bipartite graph K^ n is a subgraph of FGiri). 
Proof: We show how the complete bipartite graph can be embedded on FG(n). We group 

the nodes vf, where i * 3k into two halves such that the lower half of the processor nodes are in 
one group and the upper half of the processors are in the other group. Each processor node in 
one group is adjacent to each processor node in the second group by Propositions 2 and 5. 

Claim 5: An «-cube is a subgraph of FG(3 x 2n~l). 

Proof: This follows immediately from the previous embedding proof. An example embed-
ding of Q3 (3-cube) is shown in Figure 6. 

FIGURE 6, Embedding a Hypercube Q3 on FN 
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7. IMPLEMENTATION OF DISTRIBUTED ALGORITHMS 

In the previous section we showed how some of the common topologies can be mapped onto 
FG(n). The algorithms that run on various topologies can be implemented on FG(n) with minor 
modifications. Below, we show how a minimum weight spanning tree can be computed on FN 

Minimum Weight Spanning Tree 
The problem is to find a spanning tree with minimum sum of edge weights in a given 

undirected, connected, weighted graph G, with N nodes. We show how this problem can be 
implemented efficiently on FG(n). We implement Prim-Dijkstra's algorithm on FG(n). A set T 
contains the set of nodes currently in the spanning tree, and a set E contains the set of edges 
currently in the spanning tree. We adapt the procedure outlined in [3], as follows: 

Input: A graph G with N nodes and an adjacency matrix. 
Output: A set of edges marked as belonging to the minimum weight spanning tree. 

Step 1. T<r-$. E<-$. 
Step 2. Partition the nodes of G equally among the n processor nodes of FG(n) so 

that each processor node is responsible for \N ln\ nodes. 
Step 3. T<r-vertex one of G. 
Step 4 Each processor examines its subset of nodes not in J and selects closest 

neighbor to T {closest in terms of edge weight). 
Step 5. Processor Px finds the globally closest neighbor, say vk. 
Step 6. T^-T^jvk. E <- E^jedge(T,vk). 
Step 7. Processor Px broadcasts vk to all processors. 
Step 8. Each processor updates its closest neighbor information. 
Repeat Steps 4 through 8 until all nodes have been included in T. 

Steps 1, 2, and 3 require one time unit. Step 4 requires 0([N /n\) time units in parallel. 
Step 5 requires 0([N /rf\) time units by processor one. Steps 6, 7, and 8 require one time unit. 
Steps 4 through 8 are repeated N times. The overall complexity of the algorithm is 0(N2 In) 
The sequential algorithm takes 0(N2); hence, this algorithm is optimal. 

8. COMPARISON WITH OTHER ITERATIVE NETWORKS 

We computed various structural properties of known iterative networks from Path to Com-
plete networks of 35 nodes. Table 3 below shows these properties. Let 

tot-deg = The total number of links in the network. 
non-plan = smallest network size for which the network is nonplanar. 
min-node = The node with the minimum number of links 
min-deg = The degree of min-node. 

max-node = The node with the maximum number of links. 
max-deg = The degree of max-node. 
inc-deg = Increase in degree with the addition of a node. 

dia = The diameter of the network 
f-dia = The fault fiameter of the network 
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inf = Disconnected network 
SG(n) = Stirling network of n nodes. 
PG(n) = Pascal network of n nodes. 
RG(n) = Rencontres network of n nodes. 

TABLE 3. Comparison of Iterative Networks 

Network 

Path 
Stirling 
Rencontres 
Pascal 
Fihonacci23 
Fibonacci 
Complete 

tot-deg 
34 

169 
166 
291 
298 
397 
595 

non-plan 
inf 

8 
7 
7 

10 
7 
5 

min-node 
1 
1 

34 
26 

3 
3 
1 

min-deg 
1 
2 
2 
7 
9 

11 
34 

max-node 
2 

31 
2 
1 
1 
1 
1 

max-deg 
2 

17 
18 
34 
26 
34 
34 

dia 
34 

6 
3 
2 
3 
2 
1 

f-dia 
inf 

9 
3 
3 
4 
3 
2 

The Path network has very low connectivity and is not fault-tolerant. The number of links in 
the Rencontres network, the Stirling network, and the Pascal network does not scale uniformly. 
These networks are not symmetric either. Fibonacci networks have too many links, making them 
prohibitively expensive. 

In [5] it was shown that a full ringed binary tree with 2* - 1 nodes is a subgraph of 
SG(2k -1) for k > 2, a, foil ringed tree machine of 3(w / 4) - 2 nodes when n = 2k - 1 for k > 3 is 
contained in SG(n) for any £<k, a rectangular mesh of size 2l x2k~£ is embedded in a sub-
network induced by the nodes 2k through 2k+l of SG(ri), and a binary hypercube is a homeo-
morphic subgraph of SG(2t+1 -1) for t > 3. 

Embeddability of the Rencontres network and the Pascal network have not been studied 
extensively. However, in [4] it was shown that RG(n) contains a Hamiltonian circuit of n nodes 
and the Complete bipartite network K^n is a subgraph of RG(2n). In [7] it was shown that 
PG(n) contains a startree for all n > 1, that PG(n) contains a Hamiltonian circuit [1, 2, ..., n-1, 
w, 1], and. that PG(n) contains Wn - x (wheel of order n minus an edge). 

In section 6 we showed that various popular topologies can be embedded onto FN It is clear 
from the above that we need to be able to fine-tune a network design that "has characteristics 
almost midway between the Path networks and the Complete networks. 

9. CONCLUDING REMARKS 

Fibonacci networks have many properties desirable in interconnection networks. They have a 
small diameter, high fault tolerance, rich connectivity, small fault diameter, simple and fast rout-
ing, etc. A major disadvantage of the network is its high coast because of the large number of 
links (0(n2)). We have suggested several ways of reducing the number of links symmetrically so 
that the basic structure of the network is still maintained. This method of reduction has been 
shown to cause only constant factor loss of speedup (especially in routing). Broadcasting can be 
accomplished in constant time assuming that node vx has enough buffer space to queue messages. 
Yet another method of reduction which could be used is to prune links least used by the routing 
algorithm.. Several basic algorithms can be mapped onto Fibonacci networks. We are currently 
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working on embedding other interconnection networks on Fibonacci networks and improving the 
efficiency of some basic algorithms running on Fibonacci networks. 

10. APPENDIX: TABLES A-l AND A-2 

Let 
knum - the number of nonzero entries in fl and/2 in Table A-l. 

rknum{j) = the number of nonzero entries in the first j entries in Table A-l. 
rem - n (mod 24). 

The expression for degree of a node vk in FG2,3(ri) is given by 

deg{vk) = knum x 
24 

+ rkmm(rem). 

It should be noted that Table A-l can be used only for the construction of the lower triangle 
of the adjacency matrix. Therefore, Table A-l is true only when k < i. Since the adjacency matrix 
is symmetric, the upper tirangle is just a copy of the lower triangle. 

TABLE A-L Connectivity in FM{2'3} 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

f£(i) = (i2 - 3/ + 2 + 2k) (mod 6) 

2k 
2k 

2 +2k 
2k 
2k 

2 +2k 
2k 
2k 

2 + 2A: 
2k 
2k 

2 +2k 
2k 
2k 

2 +2k 
2k 
2k 

2 + 2£ 
2k 
2k 

2 +2k 
2k 
2k 

2 +2k 

f?(i) = (j2 - 3/ + 2 + 2k) (mod 8) 

2k 
2k 

2 +2k 
2k-2 
2k-A 
4 +2k 
2k-2 
2 +2k 

2k 
2k 

2 +2k 
2k-2 
2k-A 
4 +2k 
2k -2 
2 + 2* 

2k 
2k 

2 +2k 
2k-2 
2k-4 
4 +2k 
2k-2 
2 +2k 
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The degree of a node vk increases as follows (see Table A-2) for every 24 nodes added to the 
network. 

TABLE A-2, Increase in Degree of Nodes for Every 24 Nodes 

rem 

inc. in deg. 
rem 

inc. in deg. 

1 

17 

13 

14 

2 

11 

14 

12 

3 

7 

15 

8 

4 

17 

16 

14 

5 

11 

17 

10 

6 

8 

18 

9 

7 

14 

19 

14 

8 

12 

20 

11 

9 

7 

21 

11 

10 

14 

22 

13 

11 

12 

23 

11 

12 

8 

24 

11 

ACKNOWLEDGMENT 

The authors would like to thank Dr. Oren Patashnik for pointing out an error in an earlier 
version of the paper. 

REFERENCES 

1. A. Boals, A. Gupta, & N. Sherwani. "On Optimal Embeddings into Incomplete Hyper-
cubes." Proc. 5th Intl. Parallel Processing Symposium, 1991. 

2. F. Boesch & R. Tindell. "Circulants and Their Connectivities." J. Graph Theory (1984): 
487-99. 

3. S. K. Das & Narsingh Deo. "Stirling Networks and Their Properties." Congressus Numer-
antium 54 (1986):5-20. 

4. S. K. Das & Narsingh Deo. "Rencontres Graphs: A Family of Bipartite Graphs." The Fibo-
nacci Quarterly 2 5 3 (1987):250-62. 

5. S. K. Das, Joydeep Ghosh, & Narsingh Deo. "Stirling Networks: A Versitile Combinatorial 
Topology for Multiprocessor Systems." Discrete Applied Math 37/38 (1992): 119-46. 

6. Narsingh Deo. Graph Theory with Applications to Engineering and Computer Science. 
Englewood Cliffs, NJ: Prentice Hall, 1974. 

7. Narsingh Deo & M. J. Quinn. "Pascal Graphs and Their Properties." The Fibonacci Quar-
terly 21.3 (1983):203-14. 

8. Narsingh Deo & M. S. Krishnamoorthy. "Topelitz Networks and Their Properties." IEEE 
Transactions on Circuits and Systems 36 J (1989): 1089-92. 

9. R. L. Graham, D. Knuth, & O. Patashnik. Concrete Mathematics. New York: Addison 
Wesley, 1989. 

10. J. Hong, K. Melhorn, & A. Rosenberg. "Cost-Tradeoffs in Graph Embeddings." Journal of 
the ACM (19S3):709-2S. 

11. W. Hsu. "Fibonacci Cubes—New Interconnection Topology." IEEE Transactions on Par-
alel and Distributed Systems 4.1 (1993):3-12. 

12. J. C. Molluzzo. "Steinhaus Graphs." In Theory and Applications of Graphs. New York: 
Springer Verlag, 1978. 

13. B. Monien & I. H. Sudborough. "Comparing Interconnection Networks." Lecture Notes in 
Computer Science 324 (1988): 138-53. 

AMS Classification Numbers: 05C75, 05C90, 68M10 

1994] 345 


