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1. INTRODUCTION 

We define vp(x) as the highest power of prime/? which divides the integer x. The function 
vp(x) is often called the^-adic order of x. In this paper we characterize the divisibility by 2 of 
the series E^iC-l)*"1-^ and Hk=\^, i.e., we determine their 2-adic orders. The characterization 
generalizes previously known results on 2-adic orders and is based on elementary proofs. 

2, MESULTS 

For an integer x, the j?-adic order v (x) of x is the highest power of prime p that divides x. 
We can think of the relations p\x mdp\x as v (x) > 1 and v (x) = 0, respectively. 

We set vp (0) = oo and vp (x I y) = vp (x) - vp (y) if both x and y are integers. Therefore, for all 
nonzero rational numbers, the order is defined to be a finite integer. From now on, all rational 
numbers will be meant in lowest terms. 

For rational numbers ak (k > 0) and rational x, the/?~adic order, vp(T^=0akxk) of the series 
T^=0akxk can be introduced as \imn_+O0vp(£lss0akxk>) if the limit exists, in which case there 
exists an nQ such that v (E^a^x*) = v

p0^k=oakxk) f°r ^ % To illustrate this, we consider 
the series -^ = x + x2 + x3 + • • •. The reader can easily verify that v ( j ^ ) = v (JC) if v (JC) > 1 
and the limit does not exist if vp(x) < 0. Actually, vp(x + x2 + x3 + • • • + xw) = nvp(x) if vp(x) < 0. 
Notice that if v2(x) = 0 then v2(x + x2+x3 + — +x2"+1) = 0, while v2(x + x2 +x3 ...+x2")>n. 
Finding the/?-adic order of functions helps in analyzing the divisibility property of the underlying 
or related functions. We note that Clarke [1] has recently studied the /?-adic order of the 
logarithm by using /?-adic arguments in order to characterize the divisibility properties of the Stir-
ling and partial Stirling numbers. The interested reader should consult a book onp-adic metrics 
(e.g., [2]) for a general treatise ofp-adic power series. 

jfc In this paper we consider the series log(l + x) = Z^=1(-l) \- and - log(l - x) = Y%=1 ~- and 
determine their 2-adic orders by elementary arguments based on binomial expansion. 

In most cases the/7-adic order of log(l + x) can be derived by the well-known 

Theorem A (Yu [4]): We have 

vp(log(l + *)) = vp[±{-if-1 £ \ = vp(x) ifvp(x) > - i - , 
V*=i K J P l 

and v (log(l + x)) does not exist if vp(x) <0. In particular, for any integer x, vp(log(l + x)) = 
v (x) ifp > 3 and/?|x, or if p = 2 and 4|x, while for p\x thep-adic order vp(log(l + x)) does not 
exist. 
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In fact, Theorem A completely describes the p-adic order for p > 3. The purpose of this 
paper is to characterize the 2-adic orders of the two series in the case not covered by Theorem A, 
i.e., for every even integer x and p-2. We note that the proof of Theorem A is based on the 
observation that under the conditions of Theorem A given for p and x, the p-adic order of the 
terms ( - l ) ^ - 1 ^ , k>2, of the infinite series Yk=i(-l)k~l j ^ exceeds that of the first term, x (cf. 
[2], p. 81). 

If p = 2 andx = 2, then the following lemma (cf. [2], Ex. 7, p. 83) describes the 2-adic 
"behavior" of ££=1 \-, i.e., the sum of the first n terms of the expansion -log(l - x). 

Lemma B: The 2-adic order of the rational number 2£=1 \- approaches infinity as n increases. 

An elementary proof can be given based on the observation that 

I ^k™n,(*-v
2(*))> 

\k=n+l k>n+l 

which assures that v2(^=n+l j-) becomes arbitrarily large as n -> oo. One can prove that 

f n 0k\ 

I 
.,2" ( 

>v, 
\k=\ «• j 

k\ OO f% 

\k=n+l K J 

holds for infinitely many values n. In fact, a ^-adic argument shows that equality holds for all n. 
We leave the details to the reader. 

We set vp(J^n
k=0akxk^) = oo if? for every integer N>1, there exists an integer n0 such that 

pN divides lln
k^akxk for every n>n0. In this case, v (2%=0akxk) = vp(%™=n+lakxk) holds. 

By the Lemma, we set v2(Z^=1j-) = oo. We note that 0 and 2 play a special role in the 2-adic 
analysis of log(l-x) for these are the values for which v2(log(l-x)) = oo (cf. [2]). Our results 
are summarized in the following two theorems. 

Theorem 1: For any even positive integer x, 

Ar—1 X_ 

k 

k\ 

2, 
2, 
2, 
3, 
3, 
2, 
2, 
v2<> + 2), 
v2(x\ 

if JC = 2 , 
i f x s 2 
ifx = 4 
if x = 6 
ifx = 8 
ifx = 10 
ifx = 12 
if x m 14 
ifx = 0 

(mod 16), 
(mod 16), 
(mod 16), 
(mod 16), 
(mod 16), 
(mod 16), 
(mod 16), 
(mod 16). 
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Theorem 2: For any even positive integer x, 

oo, ifx = 2, 
v2(x-2), ifx = 2 
2, 
2, 
3, 
3, 
2, 
2, 

lv
2(*)> 

if x = 4 
if x = 6 
if* = 8 

(mod 16), 
(mod 16), 
(mod 16), 
(mod 16), 

i fxs lO (mod 16), 
if* = 12 (mod 16), 
if* = 14 (mod 16), 
ifjc = 0 (mod 16). 

Remark 1: The above theorems could be restated in a more compact form: 

v2(x), if x = 0,4,8,12 (mod 16), 
v2(x + 2), ifx = 2,6,10,14 (mod 16), 

and 
v2(x), if x s 0,4,8,12 (mod 16), 
v2(x-2), ifx = 2,6,10,14 (mod 16). 

Notice the sharp contrast between v2(E"=1(-4)*_1^r) and v2(Z*=i^-). We can combine the 
cases x ^ 2 of the two theorems by substituting -x in place of x and carrying out the modular 
calculations. 

For a rational x = a/b with v2(x) = 1 and b > 1, there exists a sufficiently large integer m 
such that v2(log(l + x)) < m. We set x' = a * A"1, where $_1 is the unique solution to the equation 
&*£_1 = 1 (mod2w) with 0<b~l <2m. We can proceed to determine v2(log(l + x')) by Theo-
rem 1 and observing that v2(log(l + x)) = v2(log(l+ *')). If x' # 14 (mod 16), then m = 4 is an 
appropriate choice. However, if it turns out that the remainder is 14, then one should check 
whether v2(x' + 2) <m and try a larger m if it fails. A similar method works for determining 
v2(log(l-x)), too. 

For example, if x = 6 / 5, then v2 (log(l - 6 / 5)) = 2 follows easily with m = 4. We use m = 5 
and have x' = 6*13 = 14 (mod 16) in order to obtain v2(iog(l + 6/5) = v2(6* 13 + 2) = 4. For 
x = 426/555, we start with m = 4. Since x' = 426 * 3 = 14 (mod 16) and v2(426 * 3 + 2) = 8, we 
note that we need a larger m. By using m = 10, we obtain xf = 426 * 131 = 14 (mod 16) and 
v2(log(l + 426/555)) = v2(426*131 + 2) = 9. 

Remark 2: Similarly to the proof of Theorem A, we observe that v2(2*) < v2((2')* Ik) \fk>2 
and s>2. Therefore, 

Z ( 2 ) 
\k- .1 * 

= Vn 

s\k CO f1S\' 

Z ( _ r i ( 2 i \ = v2(2') = s ifs>2. 
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3. PROOFS 

Proof of Theorem 1: The case of x = 2 is easily verified by checking the first couple of 
terms of E^xC-l)^"1^. Indeed, v2(Z4

k=l(-l)k-1 f) = 2 mdv2(2k/k)>2 for £ > 5 . 
If x = 6 or 10, then by inspecting the sum of the first few terms we obtain, similarly to the 

case of x = 2, that the orders are 3 and 2, respectively. 
We can extend these results for x = 2,6, and 10 (mod 16). From now on a denotes an arbi-

trary integer while b is an arbitrary odd integer. The basic idea is that if v2(Z™=l(-l)k~l -^-) = r < 
s then v2(S^=i(- l /"1 (*+<f *} ) = r, too, since xk =(x+a2s)k (mod2"). [Of course, the same 
applies if we omit the factors (-l)*-1.] By the previous observations, we can set s = 4. 

For x == 0,4,8, or 12 (mod 16), the statement follows from Theorem A which claims that the 
order must be v2 (x). 

Instead of simply proving the remaining case x = 14 (mod 16), we combine the cases x = 2 
and 14 (mod 16) to make this proof transparent to prove Theorem 2. Let s = 4. We calculate the 
2-adic order of Z^L^-l)^ - 1^ us*ng the binomial expansion of the terms xk = (h2s +2c)k where 
c is either 1 or - 1 . The expansion yields 

(b2s +2c)k = (2(b2s~l +c))k = J^2k(f\(b2s-iyck-\ 

Note that the identity m = jf*!}) implies that \^lk is an integer multiple of lit. Consider the 
sum 

Z(-i> 
k=l 

t_,(ft2' + 2c)* 
k 

in three terms, one term for £ = 0, another for I = 1, and the last one for all the remaining cases, 
£>2. We get 

£ ( 1)t.,(&2' + 2c)* 

Ar-2cY* A A k(k
t-$be2^+Kc*-i ( 1 ) 

=-i,L¥L+ifa^K-cri+il<rir-iil*IlL—, • 
k=l " k=l k=l £=2 *-

Obviously, the 2-adic order of the second term is s if b & 0. Notice that the third term is always 
divisible by 2s+l for $>3, since this condition implies that £(s-l) + k-v2(£)>£(s-l)+k-
log2 l>s + \. It turns out that the 2-adic order of the first term on the right side of identity (1) is 
2 if c = 1 as we have seen it at the beginning of the proof. By Lemma B, the 2-adic order of the 
first term is ooifc = - l . It follows that v2{Y^=l{-l)k~\b2s +2cf Ik) = s if c = -1 (and ft*0), 
while it is 2 if c = 1. D 

Proof of Theorem 2: Basically, the proof of Theorem 1 can be repeated here except for 
x = 2, which case is the content of Lemma B. Careful inspection reveals that the 2-adic orders 
are switched for x = 6 and 10 (mod 16). 
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Similarly to identity (1), we have 
£(s-l)+k k-l 

k=i K k=\ K k=i k=\e=2 l 

where the last term is always divisible by 2s+l for s > 3. 
By simply switching the cases c = 1 and c = -1 in the previous proof and using identity (2), 

we derive that v2(X^=l
{brfc)k) = s if c = 1 (and A * 0), while it is 2 if c = - 1 . D 

We note that Clarke [1] has recently proved similar results by using p-adic arguments. 
Lemma B points to the odd behavior of v2(2^=1 ̂ -) at x - 2. Analysis of this behavior gives 

rise to the question on the rate at which v2(X£=1x) increases as n gets larger. We were unable 
to answer this question; however, numerical evidence suggests some pattern for the increase of 
the 2-adic order. The following conjecture has been proposed in [3], in the context of the 
divisibility by 2 of the Stirling numbers of the second kind, S(a2n -1,2m), where n>m>4 and a 
is a positive integer. 

Conjecture3: For m> 4, v2(jX=x
2£-) = 2m+2m-2. 
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