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1. INTRODUCTION

We define v,(x) as the highest power of prime p which divides the integer x. The function

v,(x) is often called the p-adic order of x. In this paper we characterize the divisibility by 2 of

the series X (~1)*' =- and Zk—l *~, i.e., we determine their 2-adic orders. The characterization
generalizes previously known results on 2- ad1c orders and is based on elementary proofs.

2. RESULTS

For an integer x, the p-adic order v,(x) of x is the highest power of prime p that divides x.
We can think of the relations p|x and pfx as v,(x) 21 and v,(x) = 0, respectively.

We set v,(0) =0 and v,,(x/ y) =v,(x)—v,(y) if both x and y are integers. Therefore, for all
nonzero rational numbers, the order is defined to be a finite integer. From now on, all rational
numbers will be meant in lowest terms.

For rational numbers a;, (k > 0) and rational x, the p-adic order, v,(X;_,a,x*) of the series
>roa.x* can be introduced as lim, . p(Z " oa,x") if the limit exists, in which case there
exists an 7, such that v,(X;_oa,x*) =v,(Ziax*) for n=n,. To illustrate this, we consider
the series ;%-=x+x?+x’+---. The reader can easily verify that v,(Z)=v,(x) if v,(x) 21
and the limit does not exist if v,(x) <0. Actually, v,(x+x*+x>+---+x") =nv (x) if v (x) <0.
Notice that if v,(x)=0 then v,(x+x*+x>+---+x**") =0, while v,(x+x*+x>... x2 )>n.
Finding the p-adic order of functions helps in analyzing the divisibility property of the underlying
or related functions. We note that Clarke [1] has recently studied the p-adic order of the
logarithm by using p-adic arguments in order to characterize the divisibility properties of the Stir-
ling and partial Stirling numbers. The interested reader should consult a book on p-adic metrics
(e.g., [2]) for a general treatise of p-adic power series.

In this paper we consider the series log(1+x) = Xp_,(-D)* " £ £ and —log(1-x) =32, = * and
determine their 2-adic orders by elementary arguments based on bmom1al expansion.

In most cases the p-adic order of log(1 + x) can be derived by the well-known

Theorem A (Yu [4]): We have
= k-1 xk . 1
vp(log(l +x)) = v, Z(~1) — |=v,(x) ifv,(x)>—,
k=1 k pP-
and v, (log(1+x)) does not exist if v,(x) <0. In particular, for any integer x, v,(log(1+x)) =
v,(x) if p >3 and p|x, or if p=2 and 4|x, while for pfx the p-adic order v, (log(1+x)) does not

exist.
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In fact, Theorem A completely describes the p-adic order for p>3. The purpose of this
paper is to characterize the 2-adic orders of the two series in the case not covered by Theorem A,
i.e., for every even integer x and p=2. We note that the proof of Theorem A is based on the
observation that under the conditions of Theorem A given for p and x, the p-adic order of the
terms (~1)k’ll‘ki, k =2, of the infinite series Z}f:l(—l)k"% exceeds that of the first term, x (cf.
[2], p. 81).

If p=2andx=2, then the following lemma (cf. [2], Ex. 7, p. 83) describes the 2-adic
"behavior" of X}_, % i.e., the sum of the first # terms of the expansion —log(1- x).

Lemma B: The 2-adic order of the rational number >;_, lkk— approaches infinity as 7 increases.

An elementary proof can be given based on the observation that

2 2k .
v, Z =— |= min (k - v, (k)),

kentl k kzn+1

which assures that v,(Z¢_,,, %) becomes arbitrarily large as » — . One can prove that

n‘2k © 2k)
V. — |2V —_—
(32):H 22

holds for infinitely many values n. In fact, a p-adic argument shows that equality holds for all ».
We leave the details to the reader.

We set v, (X}, @,x") = oo if, for every integer N >1, there exists an integer n, such that
p" divides X} ,a,x* for every n>n,. In this case, v,(Zj_o@x*) =v,(Zi., ax*) holds.
By the Lemma, we set vz(Zle%:—) =o. We note that 0 and 2 play a special role in the 2-adic
analysis of log(1—-x) for these are the values for which v,(log(1—x)) = (cf. [2]). Our results
are summarized in the following two theorems.

Theorem 1: For any even positive integer x,

( ifx=2,

ifx=2 (mod16),
ifx=4 (modl16),
ifx=6 (mod16),
ifx=8 (mod16),
ifx=10 (mod16),
ifx=12 (mod16),
v,(x+2), ifx=14 (modl6),
(v, (%), ifx=0 (mod16).

AR

-
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Vz(i (-n*! %) =9

-

-
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Theorem 2: For any even positive integer x,

0, ifx=2,
v(x-2), ifx=2 (modl16),

2, ifx=4 (mod16),

© ok 2 ifx=6 (modl16),
Y, E—k— =43
k=1 3
2
2

ifx=8 (mod16),
ifx=10 (mod16),
ifx=12 (mod16),
, ifx=14 (mod16),
(v, (x), ifx=0 (modl16).

»

-

-

Remark 1: The above theorems could be restated in a more compact form:

& g Xt [ra(x), ifx=0,4,8,12 (mod16),
Va Z D" —|= o
P} k v,(x+2), ifx=26,10,14 (mod16),

and

i x* v, (x), ifx=0,4,8,12 (mod16),

R Y — =

N2 k) |v(x-2), ifx=2,6,10,14 (mod16).

Notice the sharp contrast between v,(Zp_,(~1)*"'2) and v,(Zj, 2-). We can combine the

cases x =2 of the two theorems by substituting —x in place of x and carrying out the modular
calculations.

For a rational x=a/b with v,(x)=1and b >1, there exists a sufficiently large integer m
such that v,(log(1+x)) <m. Weset x'=axb ™', where b~ is the unique solution to the equation
bxb' =1 (mod2™) with 0<»™' <2™. We can proceed to determine v,(log(1+x’)) by Theo-
rem 1 and observing that v,(log(1+x)) =v,(log(1+x")). If x'#14 (mod 16), then m = 4 is an
appropriate choice. However, if it turns out that the remainder is 14, then one should check
whether v,(x’+2)<m and try a larger m if it fails. A similar method works for determining
v, (log(1—x)), too.

For example, if x=6/5, then v, (log(1-6/5)) =2 follows easily with m = 4. Weusem =5
and have x'=6+13=14 (mod 16) in order to obtain v,(log(1+6/5)=v,(6+13+2)=4. For
x =426/555, we start with m = 4. Since x’ =426 *3 =14 (mod 16) and v,(426+3+2) =8, we
note that we need a larger m. By using m = 10, we obtain x' =426x131=14 (mod 16) and
v, (log(1+426/555)) = v, (426 % 131+2) = 9.

Remark 2: Similarly to the proof of Theorem A, we observe that v,(2) <v, @ 1k)ifk=2
and s> 2. Therefore,

Vz(i (2;)k j = "z(i(—l)k'1 %) =v,(2")=s ifs>2.
k=1

k=1
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3. PROOFS

Proof of Theorem 1: The case of x = 2 is easily verified by checking the first couple of
terms of T (—1)* ==, Indeed, v,(Zi_,(-1)¥"2) =2 and v,(2* / k) > 2 for k 25.

If x=6 or 10, then by inspecting the sum of the first few terms we obtain, similarly to the
case of x = 2, that the orders are 3 and 2, respectively.

We can extend these results for x=2, 6, and 10 (mod 16). From now on a denotes an arbi-
trary integer while b is an arbltrary odd integer. The basic idea is that if v,(Z7_, (- k! x =r<
s then v, (o, (-1)F* i’C—“L"—z—)——) r, too, since x* = (x+a2°*)* (mod2°). [Of course, the same
applies if we omit the factors (—1)*~'.] By the previous observations, we can set s = 4.

For x=0,4, 8, or 12 (mod 16), the statement follows from Theorem A which claims that the
order must be v,(x).

Instead of simply proving the remaining case x =14 (mod 16), we combine the cases x =2
and 14 (mod 16) to make this proof transparent to prove Theorem 2. Let s =4. We calculate the
2-adic order of Z;l(—l)"‘ll‘ki using the binomial expansion of the terms x* = (b2° +2¢)* where
cis either 1 or —1. The expansion yields

(B2° +2¢)F = (22" +0))* = iZ"(’Z)(bT—l)eck‘e.
£=0

Note that the identity (l;) = %(’;:;) implies that (’Z)/ k is an integer multiple of 1//. Consider the
sum

i (-1 (b2s 220)"

k=1

in three terms, one term for £ =0, another for £ =1, and the last one for all the remaining cases,
£>22. We get

i (~1)1 (b2° ZZC)"

k- 1) blzé(s— +k ok~ )

__i (—2c)* +Zb2k+s—1( ¢y 1_,_2(_ 1)t IZ (e 1

Obviously, the 2-adic order of the second term is s if 5 # 0. Notice that the third term is always
divisible by 2°*' for s>3, since this condition implies that £(s—1)+k—v,(¢)>(s—1)+k -
log, £ > s+1. It turns out that the 2-adic order of the first term on the right side of identity (1) is
2 if ¢ = 1 as we have seen it at the beginning of the proof. By Lemma B, the 2-adic order of the
first term is o if c=—1. It follows that v,(Zp_, (-1)* ' (2° +2¢)* / k) = s if c=~1 (and b #0),
whileitis2ifc=1. O

Proof of Theorem 2: Basically, the proof of Theorem 1 can be repeated here except for
x =2, which case is the content of Lemma B. Careful inspection reveals that the 2-adic orders
are switched for x =6 and 10 (mod 16).
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Similarly to identity (1), we have

k- l)b ¢ 2Z(s—l)+k Ck—z

© 32120 2Q) & s ea &k (]
= b2 Z 2
Z k Z k % °

2
k=1¢=2 1

@)

where the last term is always divisible by 2 for s> 3.
By simply switching the cases ¢=1and ¢ =—1 in the previous proof and using identity (2),
we derive that v,(X7_; &ukzi") =sifc=1(and b#0), whileitis2if c=—-1. O

We note that Clarke [1] has recently proved similar results by using p-adic arguments.

Lemma B points to the odd behavior of v,(X}_, %) atx =2. Analysis of this behavior gives
rise to the question on the rate at which v,(X}_, %:—) increases as n gets larger. We were unable
to answer this question; however, numerical evidence suggests some pattern for the increase of
the 2-adic order. The following conjecture has been proposed in [3], in the context of the
divisibility by 2 of the Stirling numbers of the second kind, S(a2" —1,2™), where n>m >4 and a
is a positive integer.

Conjecture 3: For m>4,v, =2 %) =2"+2m-2.
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