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Let 77l5..., 77w,... be a sequence of Independent integer-valued random variables. Let Sn-
T]l + -~ + 7jn,Ari = ESn, B* = varS„,P„(m) = P(Sn = m), and f(t,rfj) denote the characteristic 
function of the random variable 77 •. 

The local limit theorem (LLT) is formulated as Pn(m) = (27rB2ym -exp{-(m- ^f /2B2} + 
o(B~l) when n-^00 uniformly for m. 

The first results on the normal approximation of binomial distributions belong to de M oivre, 
Laplace, and Poisson. Very general theorems on the LLT were obtained by von Mises in [1], 
Assuming additionally that the summands are i.i.d. and have a finite variance, B. Gnedenko [2] 
derived necessary and sufficient conditions for the LLT. The next step, for not i.i.d. but uniformly 
bounded variables, was made by Yu. V. Prohorov in [3]. Besides those mentioned above, the 
LLT problem was investigated by W. Feller [4] and C. Stone [5]. More complete bibliographical 
information can be found in [6]. 

It is well known that for uniformly distributed random variables the LLT is equivalent to the 
central limit theorem [9], [10]. Hence, it is reasonable to ask whether this holds in general. The 
answer is negative. Using the Fibonacci sequence, we will construct below another sequence of 
independent asymptotically uniformly distributed random variables which satisfies the central limit 
theorem, has the uniform asymptotic negligibility (UAN) property but for which the local limit 
theorem fails to be valid. 

Let [1; 1,..., 1,...] be a continued fraction representation of the number <p - (1 + j5)/2. De-
note by Pj I Qj the convergents of the continued fraction of <p, which can^be represented by the 
table below. 
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It follows from the table that Pj (J = 0,1,2,...) is the Fibonacci sequence and Pj_x = Qj for j > 1. 
Let us now consider a sequence of independent integer-valued random variables represented 

by 
1. £,...,£,, 

• £/7j +1 ? • • • ? S«j +n2 ' 

/ "i e (1) 
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Each value of the line j is assumed to take the values 0, Qj,Pj with respective probability 
values of(Pj-2)/Pj, \lPJt \lPy Thus, if £. is in rowy, then 

P 2 + e'^+e^ 
f{t,Zr) = -± pJ 

\f(t,4rf = iPj % +2 +jIcost(PJ-QJ) + 2^j^(costQJ + costPJ), 

Apj+Qj)-pj« 

and 

EZr- p - p , 
J J 

v a r | r = ^ — - L - J-^L-

Notice that 

We will take rtj as 
nj=[Pj'2] + l, (2) 

where [a] represents the integer part of a. 
Let Nk=nl + -"+nk and 

Blk = v a r ^ = t ([ if 2] + l ) v a r ^ = 0 ( i f 2). 

First, we will verify that the sequence has the UAN property. For an arbitrary n, we can 
choose a number k such that Nk_x <n<Nk. Hence, 

E^-^M andBk*rlt(p?+Q>j/pJ-
Therefore, 

max14 -EZjI/*, £ c/ /£? - • 0 as » -» » . (3) 
\<j<n • J J '/ 

Here and in what follows c denotes a positive constant. However, the same symbol c may also 
stand for different constants. The preceding limit result is the UAN property. One may also 
check that Liapunov's condition, 

(» . a+s\ll{2+6) / 

\J=l J I 
for some 8 > 0, holds. 

Next, we will investigate the property of the sequence being asymptotically uniformly dis-
tributed. We use the Dvoretzky-Wolfowitz test [8], which states that this is so if, for an arbitrary 
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fixed h>0 and z- 1,2,...,/?-l, the characteristic function of the sums of the independent ran-
dom variables tends to zero at the rational point 2na, where a-zlh. 

It will be assumed, without loss of generality, that z and h are mutually prime numbers. 
Clearly, 

| / ( 2 ^ / / i , ^ p | ^ l / P y + | ( P y - 2 ) / P y + exp(2OTe^/A)/Py|. 

Assume Qj is not a multiple of A. We can then write zQj =mh + k,l<k<h-l. Hence, 

Upf-2)/Pf+&qp(2mzQJh)/Pf\< max |(P. -2)1 Pi + Qxp(2mk/h)/ p\ 
\ J J J J \ \<k<h-v J J j \ 

= max Up -3)/Pi + (l + exp(2mk/h))/Pi\ 
\<k<h~V J J J \ 

= ( P , - 3 ) / P + max \l + exp(2mk/h)\/P,. 

<{Pj-\-p)IPj, 
where p - p(h) = 2(1 - cos(;r / h)). That is, 

\f{2nzlh^Nj)\<l-plPj. 

Choosing «., by (2), we obtain 
•2/f, 2P, f{2mlh^N)\ <(l-p/Pj)^ <exp(-2p). 

The latter inequality holds only when 0. is not a multiple of A. Let us count the number of such 
Qj. Since PJ-IQJ ~ PjQj-i = ±1, it follows that Qj_x and Qj are not simultaneously multiples of A. 
Therefore, there are at least [k 12} members of the sequence Qly ...,Qn that are not multiples of h. 
Thus, 

k | an j 
Y[\f{2nzlh, gN.)\ <exp{-kp}->0 as£->oo. 

Therefore, the Dvoretsky-Wolfowitz test is satisfied. 
It should be noted that in [7] we find the following necessary condition for the LLT: 

r 
B„ n|/c>£y)|<*->o 

k=\ 
£<t<2n 

for any positive sn which tends to zero as «-> oo. We will show that this condition does not 
hold. 

Using Taylor's expansion when \t - 2/r / <p\< 1 / BN , we write 

f{t^N)tAf{^IP^N)\+\t-^l(p 

+ \t-2nlq>\ 

/(',60 

KUSN) 

t=2nl<p 

'2, 
t=e 

where t <6 <2nl'<p. 

(4) 
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Next, each term from (4) is estimated separately in the following manner: 

f(2xltp,$N)\ =\f(tj,ZN)\ +\tj-27tl<p 
J \ I J J I I J 

+ \tj-2nl<p\ 

f(.*,U) 

f(t,U) 

where tj =2nQJ_1/Qj. 
Using P,-iQj - PjQj-i = -^ an<i the elementary inequality cosx > 1 - x212, we may write 

f(t P ^ l 2 . ( ^ - 2 ) 2 + 2 + 2(P/-2) 2 + 2(i>-2) 
/(tj^Nj)] ^— pi l + pi (\-ll2(27tlQj) ) 

j j 

= l-%9-(2x/QJY>l-(2x/QJf/PJ, (7>2). 
(5) 

We then have 

f(t,ZNl) 
2{PJ-QJ)^_QM sm2n^{Pj-Q})-

2QJ(PJ-2) 

2PXR-2) . (2,-i 
x sin 2nQ,. , ^ - sin 2n =*-*• P, 

J~X Pj Qj J 

W-QJ). 2PMi-2) 
i pt 
An, 

sin 
J J 

(-1) 
QJ. 

2(PrQ}) ^P^-2) 

v P J J 

2n 

~<\-\IP]-Q]IPJ)<.AnlQJ (6) 

and 

f<t,$Ni 
(P - DO2 (P -CM2 

(P;-2)cosP/+v ' ^ cosg/+V ' ~J} cos(Pj-Qj)t f"(0,£N) 

= 2 

= 2 

J J J 

O2 -20 O2^ 

j rj J 

Using j tj• - In I <p \< 2n I Qj and taking into consideration the estimations (5) and (6), we 
have 

K2nl<p,$N)\ >\-{2nlQJ)2/Pj-U2l$-{2nl$)\P} + Q2)//>. 

Furthermore, 
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f(*,4Nl) 
t=2nl<p 

/(',»£*,) \+\tr2nl<p\\\f(tj,$Nj) 

•.AnlQj+AniP}+$)!$?; 

and 

f(t,ZNl) <2(P?+Q])/Pj. 

Taking the above estimations into account for expansion (4), we have 

\f(t,$N^>\-{2nlQjyPj-%7r2IQ)-U\Pf+Q2
j)IQ*Pj 

-(4nlQJ+4n(Pt + $)l%Pn)IBNk-2(I* + $)IBlkPJ. 

By a simple transformation, we obtain 

\f{t^Nj)\>\-clP]-clBNPj-cPjIBlk. 

Using the elementary inequality exp(-cx) < l - x f o r Q < x < l / 2 , and c> In 4, we have 

n | / C , {N^ * expj- |>,(/f HBNkPjTl + PjB^. 

Hence, we conclude that, if A: is sufficiently large, then 

7 ^ > 5 ^ 
\t-2x/<p\<B 

fl\f(t, Zj) | "'J* > BNk j txp(-c)dt = 2e'c. 
j=l \t-2nl(p\<B-N\ 

'"* 

So we have shown that the sequence (1) of independent integer valued random variables con-
structed by using the Fibonacci sequence is asymptotically uniformly distributed, satisfies the 
central limit theorem, and has the UAN property, but the local limit theorem fails to be valid for 
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