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1. I N T R O D U C T I O N 

The period length of the continued fraction convergents modulo m of reduced quadratic 
irrationals a was studied in [1]. Of course, for a = (l + V 5 ) / 2 , this is just the period length of 
the Fibonacci sequence modulo m, a well studied problem (see [2] and [6]). The period of the 
convergents of a modulo m is bounded above by linear expressions in m. These linear bounds on 
the period are achieved with some frequency, yet there are many moduli m with much smaller 
periods. However, all the periods are at least c log(/w), where c is a constant depending on a [1]. 
Work classifying some of the short periods in the special case of the Fibonacci sequence has been 
done (see [3] and [5]). This paper classifies many m having short periods for the convergents of 
general reduced quadratic irrationals. They are specified in parametric form by particular polyno-
mials whose values generate moduli giving rise to short periods. The periods are short in the 
sense that the period lengths grow linearly while the moduli grow exponentially in the families 
generated by these polynomials. 

Consider the following example. Continued fraction convergents are computed via the recur-
sions p_x = 0, p0 = 1, pn = anpn_x + pn_2, and q_x = l9qQ = 0, qn = anqn_x + qn_2. Consider the con-
vergents of a = [1,1,2] = (2 + VlO) / 3 modulo 13 shown below. 

n I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
an 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 

pn (modl3) 0 1 1 2 5 7 12 5 4 9 9 5 1 7 8 2 1 2 1 0 1 
q„ (modl3) | 1 0 1 1 3 4 7 5 12 4 7 1 1 5 8 0 5 3 11 1 0 

The block (° $ is repeated after 18 steps and hence the continued fraction convergents are 
repeated thereafter. We designate the period length of the convergents of a modulo m by k(a, m) 
or just k(m). In this example, k(a, 13) = 18. The period is always well defined for a with purely 
periodic continued fraction expansions. 
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Many properties of these periods are known [1]. In particular, if we let t denote the period 
length of a and d be the discriminant associated with a defined in Section 2, then it is known 
that, for odd primes p, the period k(p) divides (p -l)t, Apt, or 2(p + l)t depending on whether 
the Legendre symbol (?) is 1, 0, or - 1 , respectively. Moreover, a factor of 2 can be removed 
from the second two bounds if t is even. In Table 1, the period of a = [1,1,2] is given for the 
primes less than or equal to 1000, and the quotient of that period with the bounds mentioned 
above are given by Q(p). Notice that the quotient is 1 for 111 of the 167 primes given; however, 
the quotient is sometimes quite large. For example, g(859) = 43. While there is not an obvious 
pattern, we can explain, up to a factor of 2, all of the quotients over 1 appearing in Table 1. The 
explanation will be given in terms of the families of moduli with short periods that we will con-
struct in Section 4. 

2, FUNDAMENTAL MATRICES AND THE Xn -SEQUENCE 

The first four theorems below give a matrix reformulation of the process used to find the 
periods of the convergents, following [1]. Let a = [a1? a2,..., at]. Note: We will use "t" through-
out this paper to designate the length of the period of the purely periodic continued fraction. The 
convergents at the end of one /-period can be used to compute the convergents at the end of the 
subsequent if-periods and this information can be used to find the period of the continued fraction 
sequence modulo m. 

Theorem 1: L e t ^ f 9 ' " 1 q*\ T h e n f T ^ * " - 1 qA. 
\Pt-l Pt) \Pnt-l Pnt) 

The matrix Wh called the fundamental matrix for a. 
The period of a is preserved mod m means that the period of a does not change when the 

partial quotients are reduced mod m. For example, the convergents of a = [1,2,3,4] are the same 
as those for [1,2] mod 2; hence, the period of a is not preserved mod 2. 

Theorem 2: 

(i) If Wn = I mod m, then k(m)\nt. 
(ii) If the period of a is preserved mod m, then c is the smallest integer such that Wc = I mod m 
if and only if k(m) = ct. 

As an example of Theorem 2, consider the fundamental matrix for a - [1,1,2] and its powers 
modulo 13. 

"-(J I). "•-(si) -"•-(J i\ 
^•(? ?> ^ - ( ! n) ^ »*-(J ?} 

Notice that the sixth power is the first power congruent to the identity; by Theorem 2, k(13) = 
3 • 6 = 18, as we saw previously. 
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TABLE 1 

The Periods of the Convergents of a = [1,1,2] Modulo Small Primes 

p 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
71 
73 
79 
83 
89 
97 
101 
103 
107 
109 
113 
127 
131 
137 
139 
149 
151 
157 
163 
167 
173 
179 
181 
191 
193 
197 
199 
211 
223 
227 
229 
233 
239 
241 
251 
257 
263 
269 

k(p) Q{P) 
6 1 
60 1 
48 1 
72 1 
18 2 
108 1 
24 5 
144 1 
180 1 
90 1 
36 3 
120 1 
126 1 
288 1 
78 2 
120 3 
372 1 
66 3 
210 1 
444 1 
234 1 
246 1 
264 1 
588 1 
612 1 
48 13 
318 1 
660 1 
684 1 
768 1 
72 11 
276 3 
840 1 
900 1 
450 1 
468 1 
486 1 
336 3 
516 1 
360 3 
1092 1 
114 5 
1164 1 
294 2 
594 1 
1272 1 
1344 1 
678 1 
1380 1 
468 3 
714 1 
90 8 

1512 1 
1548 1 
528 3 
1620 1 

P 
111 
277 
281 
283 
293 
307 
311 
313 
317 
331 
337 
347 
349 
353 
359 
367 
373 
379 
383 
389 
397 
401 
409 
419 
421 
431 
433 
439 
443 
449 
457 
461 
463 
467 
479 
487 
491 
499 
503 
509 
521 
523 
541 
547 
557 
563 
569 
571 
577 
587 
593 
599 
601 
607 
613 
617 

k(p) Q(P) 
90 9 
276 3 
60 14 
282 3 
876 1 
918 1 
930 1 
1884 1 
474 2 
1992 1 
2028 1 
1038 1 
2100 1 
2124 1 
1074 1 
2208 1 
1116 1 
2280 1 
2304 1 
2340 1 
594 2 
1200 1 
1224 1 
360 7 
2532 1 
258 5 
2604 1 
438 3 
1326 1 
168 8 
2748 1 
924 3 
2784 1 
1398 1 
1434 1 
2928 1 
984 3 
3000 1 
432 7 
3060 1 
390 4 
1566 1 
3252 1 
1638 1 
1668 1 
1686 1 
1704 1 
312 11 
3468 1 
1758 1 
3564 1 
1794 1 
900 2 
3648 1 
918 2 
3708 1 

P 
619 
631 
641 
643 
647 
653 
659 
661 
673 
677 
683 
691 
701 
709 
719 
727 
733 
739 
743 
751 
757 
761 
769 
773 
787 
797 
809 
811 
821 
823 
827 
829 
839 
853 
857 
859 
863 
877 
881 
883 
887 
907 
911 
919 
929 
937 
941 
947 
953 
967 
971 
977 
983 
991 
997 

k(p) 
3720 
630 
960 
1926 
432 
978 
1320 
3972 
4044 
1014 
2046 
4152 
4212 
4260 
2154 
4368 
732 
4440 
4464 
2250 
2268 
1140 
2304 
1158 
2358 
1194 
1212 
4872 
1644 
4944 
354 
996 
2514 
1278 
156 
120 
5184 
2628 
528 
294 
5328 
2718 
546 
2754 
1392 
804 
5652 
2838 
5724 
5808 
5832 
5868 
5904 
2970 
1494 

Q(P) 
1 
3 
2 
1 
9 
2 
3 
1 
1 
2 
1 
1 
1 
1 
1 
1 
3 
1 
1 
1 
1 
2 
1 
2 
1 
2 
2 
1 
3 
1 
7 
5 
1 
2 
33 
43 
1 
1 
5 
9 
1 
1 
5 
1 
2 
7 
1 
1 
1 
1 
1 
1 
1 
1 
2 
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Define 

3 \P/-1 Pj) 

Note that C, = I (modm) for; < k(m) is possible if j is not a multiple of t. It is not difficult to 
show that the set of j for which Cj = / (modm) is a union of < t arithmetic progressions with the 
difference between consecutive terms in each arithmetic progression equal to k(m). 

Next, the general fundamental matrix ffhas eigenvalues 

^i = 2 ( ( f t + * - i ) + ^ ) a n d A2 = 2((Pt+qt-i)-Jd) 
where 

It follows immediately that the norm and trace of Wars given by 

XXX2 = (-iy and Xx + X2 - pt + qt_v 

TheoremS: Define 
CP _ A\ ~ A2 

Then X, = 0,2X = 1, and £»+l = (pt + qt_l) Xn +(-iy~l Xn_v 

One consequence of this theorem is that ££„ is an integer. 

Theorem 4: Let Who the fundamental matrix for a. Then 

ffln _ I Qt-l <&n +( — 1) <&n-l ^t °^n 
V A-l ^n Pt °^n +(-1) -£n-l 

Proof: This theorem is proved in [1] except that there the (2, 2) entry of the right-hand side 
is Xn+l - qt_x ££„. Applying Theorem 3 gives the desired result. D 

Theorem 5: 

(i) Suppose m is a modulus so that Xn_x = 1 and 56w = 0 mod m. Then k(m)\2nt iff is even and 
k(m) \nt is t is odd. 
(ii) Suppose the period of a is preserved modulo m, gcd(qt,m) = 1, and that c is the smallest 
integer so that !£c_x = 1 and Xc = 0. Then k(m) = ct if t is odd and k(m) = let iff is even. 

Proof: 
(i) Applying the congruences to Theorem 4 gives Wn = {-Vf~lI modulo m. If f is odd, 

Wn =1 and Theorem 2 gives the desired result; otherwise, square both sides to get W2n = / mod 
m and the case for even f follows. 

(ii) Suppose a, m, and c are as described. Again we see Wc = (-l)'"1/ and we claim c is the 
smallest such integer. If not, there is an n with n<c and such that Wn = (-1)'-1/. Then, looking 
at W£2 in Theorem 4, we see g, Xn = 0 so ££„ = 0 since gcd(gr, wi) = 1. Then, looking at W£l9 we 
see (-iy~l Xn_l-\-qt_lXn = (-l)f_1, which implies Xn_l = l, and these contradict the minimal 

^^w+i-iy-1^!. 
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choice of c. Thus, c is the smallest integer such that Wc = (-l)'"1/. If t is odd, Theorem 2(ii) 
gives k(m) -ct. If / i s even, we know that W2c = I. We claim 2c is the smallest power of W 
giving the identity matrix mod m. If not, say Wn = / with n < 2c is the smallest such power. 
Consider two cases: n > c and n < c. If n > c, we use the Euclidian algorithm to write n-qc+r 
with 0 < r < c. So I = W" = (Wc)qWr. If q is even, this means Wr = / , contradicting the mini-
mality of n unless r - 0 or q - 0. However, 9 = 0 is impossible since « > c. In the case with 
r = 0, we get n = cq > 2c, contradicting w < 2c. If q is odd, fFr = - / , contradicting the minimal 
choice of c. Next, consider the case n < c. The Euclidean algorithm gives c-qn^-r with 
0 < r < n. So - / = Wc = (Wn)qWr = J^. But r <n<c, contradicting the minimality of c unless 
r = 0, which is impossible. Thus, 2c is the smallest power of W giving the identity, by Theorem 2, 
k(m) = 2ct. D 

For example, consider a - [1,1,2]; the trace is 6, so XQ = 0yXx = 1, and ££„ = 6 <$£„_! + 5SW_2. 
Modulo 13, we get 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 
£„ (modl3) 0 1 6 11 7 1 0 1 6 11 7 1 0 

Notice that Xn_x = 1, <££„ = 0 for n = 6, and this is the smallest such n. Also gcd(3,13) = 1 and 
the period of a is preserved mod 13, so £(13) = 6-3 = 18 as we have seen. 

We now turn to a matrix formulation that can be used to compute the <££w-sequence. In parti-
cular, it will allow us to compute reduction formulas for Xin and 5C/W_1 in terms of Xn and t£n_x. 

Theorem 6: Let 

TJ o i Wc- i rX zA 
Then 

j*w w _ | ( 1) «£«-! °^« 

Proof: For w = 1, 7 has the desired form. Now suppose the theorem is true for n. Then 

j>n+l _ rpj>n _ I 0 1 if (—1) <£n-\ °£n 
1 -11 - I , n , - l ^ +{] J| ^ M ^ ^ (-i)'"1 pt+qt-i){(-\y~1x„ % 

(-l)'-1^ a w+l 

c - i ) 2 ^ ^ +(-iy-1te+^_,)^„ (-ly-1 ^„ +to+ft_1)s »+i 

( V ^ « + l °^« 

as desired. • 

Corollary 7: Successive entries in the £C„-sequence satisfy a quadratic identity: 

^=-(-i)-(r-1}(A+a.i) ^,-i s,+Hr('-1) ̂  -K-ir^1). 
226 [JUNE-JULY 



SHORT PERIODS OF CONTINUED FRACTION CONVERGENTS MODULO M 

Proof: Taking the determinant of Tn in Theorem 6 and using the recursion for SEn+l yields 

(_!)«. = (-iy-i x„_, ((ft+gM) xm -K-ir! 2U) - (-I)'"1 K • 
The desired formula results from distributing and solving for 3 * ^ . D 

One can use Theorem 6 to compute reduction formulas for the 5£„-sequence. For example, 

( - 1 ) O £ 2 H - 1 °^2n T — 
( V °^2n ^2n+l) 

2 
( (-l\^-l)cp2 _u_\\t-\qa / 1 V - 1 CP cp , CP cp \ 

= (ry = 
(_1)2(r-i) c ^ + ( _ i y - i 2 2 ( _ i y - i ^ X n + ^ ^ 

n+l 

Now considering the (1,1) entries of those, we see that 

^ 2 - 1 = (-1)'"1 zU+a£=-(A+*,-i) 2 _ i ^ « + 2 a?„ +(-i) r- ( ' -1 ) 

using Corollary 7 for the second equality. Notice that using Corollary 7 removes the appearances 
of 5S^ . Likewise, 

In general, &in_i and 5£/w can be described in terms of Xn_x and 56 „ in that way. We formalize 
the idea of eliminating square powers of Xn_x as follows. We define the matrix: 

{(-iy-lb (riy-'a+ip.+q^y,) 

U captures the symmetry of T". In fact, if a = Xn_x and b = X„, then U is T". We will call a 
polynomial in a and b a-simplified when the identity 

a2 = - ( - l ) - ( ' -D( A +ft_1)flft + (_i)-('-i)62 +(_i)'»-2('-i) 

has been used to eliminate all appearances of a2 and other powers of a higher than 1. Our defini-
tion generalizes the definition used in [4] and [5]. The next section gives a canonical form for the 
a-simplified powers of U. This canonical form allows us to identify moduli, tn, which generate 
very short periods for the convergents of continued fractions modulo tn; see Section 4. 

3. PARAMETRIZING THE a-SIMPLIFIED REDUCTION FORMULAS 

We define polynomials R2j and S2j, generalizing polynomials defined in [5], using intertwined 
recursions. These will be used to parametrize the reduction formulas for the i£„-sequence. Let 

k = 0, R, = 1, and R2j = V 2 + ( " 1 ) V 

[S0 =2, S2 = 1, and S2j = ft2dRy_2 + ( -1 )%_ 4 . 

Table 2 below gives the values of R2j for small j when n is even. Notice that the power of h is 
always twice the power of d and that the degree increases at every other term. 
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The table also suggests the conjecture that ifi\j then R2i\R2j. 

TABLE 2. R2J for Small/ and Even n 

R*-
R,: 

R*-

* * • • 

V 
Rw-

= 0 
= 1 
= i 
= 3+b2d 
= 2+b2d 
= 5+5b2d+bAd2 

Rn = 3+4b2d+bAd2 = (l+b2d)(3+b2d) 
Ru = l + Ub2d + lb4d2+b6d3 

Rl6=4 + lM2d+6b4d2+b6d3 = (2+b2d)(2 + 4b2d+b4d2) 
Rls = 9 + 30b2d + 21b4d2 + 9b6d3+b*d4 = (3+b2d)(3 + 9b2d+6b4d2 +b6d3) 
R20=5 + 20b2d + 2lh4d2+Sb6d3+bsd4 = (l + 3b2d+b4d2)(5+^^ 

R22 = ll+55b2d + llb4d2 +Ub6d2 + llb*d4 +bl0d5 

R24 = 6 + 35b2d+56b4d2 +36b6d3 + 10b*d4 +bl0d5 = (l+b2d)(2+b1d)(3+b2d)(l+4b1d +b4d2) 

Lemma 8: 
(i) The polynomials R2j and S2J, with variable b, only include even degree terms. 

(ii) deg(^7_2) = deg(S4j_2) = 2y-2 , d e g ( ^ ) = 2j-2, deg(S4,) = 2j. 

(iii) The polynomials R2j and S2j have positive coefficients when in is even and is identical when 
tn is odd except that every other coefficient, beginning with the second highest, is the opposite of 
the corresponding coefficient of R2J or S2j. 

Proof: 
(i) This follows because the base cases are constants and the general recursions only 

involve b as b2. 
(ii) deg(J^y+2) = deg(54/ + (-l)mi^/_2) = max(27,27-2) = 27. Notice that the highest 

order term is not (-l)*" so there is no possibility of cancellation. The other polynomials can be 
checked in a similar manner. 

(iii) First, we claim that R2j and S2j are homogeneous in the expressions b2 and (-l)tn. The 
claim is true when j = 0 andy = 1. Since deg(i?2y) = deg(S2j_2) and deg(S2j) = 2 + deg(i?2y_2), 
this homogeneity is preserved by the recursive definitions. Hence, the claim is true. Since the 
highest terms of R2J and S2j do not involve (-1)"2, each term with lower powers of b2 will have 
complementary powers of (-l)m. Hence, there is an alternation of sign. D 

Next, we give a result which shows that certain combinations of these polynomials are 1. 

hen 
0) 

(H) 

vma 9: For 
R2j+2^2j-2 ' 

R2j -2^2j+2 ' 

7 * 1 , 
- RIJSIJ : 

- R2j$2j 

= (-1)0-1)*, 

= _ ( _ i)0-i)'« 
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Proof: We prove both parts simultaneously by induction. Forj = 1, 

R4S0-R2S2 = 2-l-hl = l = (-lf", 

B<jS4-R2S2 = 0-$4-hl = -l = -(-l)0t". 

Assuming now that parts (i) and (ii) hold fory, consider j + 1 in part (i): 

^2j+4^2j ~~ ^2j+2^2j+2 = \$2j+2 + (""1) ^2j)^2j ~ \^2j + (~~0 "^2j-2)^2j+2 

= (~l)tn(R2jS2j~R2j-2S2j+2) 

= (-l)tn(-l)u~r)tn using the induction hypothesis from (ii) 

=(-iy». 
The induction step for part (ii) is similar. D 

Theorem 10: The first row of U2j after a-simplification is given by 

v(j) = ((-1)"" +bR2J((-l)'a(pt +qt_l)S2J +b{-\TdRlj_2 

+2b{-\y-lS2j), ft(A(p/+ft_1) + 2(- iy- I a)^ / 5 l y ) . 

Proof: By induction on j . The first row of U2 after a-simplification is 

( ( - i r - 2 ( - l ) ' * 2 + ( - i y a ^ + ^ _ 1 ) , - 2 ( - l ) r a 6 + A 2 0 ' , + ^ _ 1 ) ) , 
which is the same as v(l). Next, we need to show that v(y+ 1) equals the a-simplified form of 
v(j)U2. We begin with the second components. The a-simplified form of v(j') times the second 
column of U2 is 

v(j)(2(-l)2'ab - (~\yh2{pt + q^X (-iya(pt + qt_x) + b2(pt + qt_xf) 

where we have used the definition of cf to simplify. Using Lemma 9(i), we can replace (-l)jnt by 
R and S polynomials. Thus, the third factor of the above is 

= % ( 5 2 i . + ( - l ) % . 2 ) + (-irV2;-2 

= h (ii?2yi?2;+2 + ( - 1 ) R2j+2$2j-2 = ^2j+2^2j+2-

Thus, the second component of v(J) times the second column of U2 is 

b(2(~iy-la + b(pt +qt„l))R2j+2S2J+2. 

On the other hand, the second component of v(j +1) is the same thing, which checks the induc-
tion step for the second component. 

The first component can be checked in a similar, but more tedious, manner. D 

Consider wheny = 3 and a = [1,1,2], for example. Then, by Theorem 10, the first row of U6 

after a-simplification is 
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( ( - I f + Mtf(-l)3a(ft +<l2)Se + b((-lfndR4 +2(-l)2S6)), b(b(p3 + q2) + 2 ( - l ) 2 a ) i^ 6 ) , 

where R6 = 3 + b2d, R4 = 1, and S6 = l+b2d. Now, letting a = <S£W_1? b = $n, d = 40, and /?3 + 
#2 = 6, we get reduction formulas for X6n_x and 5C6„ in terms of SBft_l and ££„: 

and 
^ 6 n = ^ (6^„+2S„_ 1 ) (3+40^ 2 „) ( l+40^) . 

In particular, let n = 4, then ££3 = 37, S 4 = 288, so 

^ 2 3 = 1 + 228(3+40(228)2)((-6)(37)(l+40(228)2) + 228(40 + 2(1 + 40(228)2))) 
= 230684837784645817 

and 
S 2 4 = 228(6(228) + 2(37))(3+40(228)2)(l+40(228)2) 

=1421544022419889368, 

which are straightforward and unpleasant to check. 

Corollary 11: Let j > 1. The first row of U2j+l after a-simplification is given by 

((-iy(-n)J"^-bR2j(abdRv+2 +Sy(-l)W(pt +?,_,))), 

A((- ir r +BiJ(p2dRiJ+2 + 2S2J(-i)"'))). 

Proof: Multiplying out v(/)C7 and a-simplifying yields 

((- l) ' (-(- ir<a + ̂ 2y(-(-l)^aMi?2y_2 + S2J(4(-\yab - (-l)^l)t(Pt + * M ) - o&fo + ̂ _1)2))), 

6( (_iy* +RZJ(f-iy*tfdR2J_2+s2J(2(-iy-4(-iyb2+b2(Pt + ̂ _1)2)))). 

The recursive definition for i?2y+2 and the definition for d simplifies this into the desired result. D 

Consider wheny = 4 and a = [1,1,2], for example. Then, by Corollary 11, the first row of U9 

after a-simplification is 

( ( - l ) 3 ( _ ( - l ) 1 2 " a - ^ ^ 

where Bs = 2 + b2d,Ss = 2 + 4b2d + b4d2 and Rl0 = 5 + 5b2d+b4d2, as seen in Table 2 and from 
the recursive definition of S2j • Letting a = 56„, b = 2Jn, d = 40, and p3 + q2 = 6, we get reduction 
formulas for X9n_x and ££9„ in terms of Xn_x and Xn: 

^9n-i = - ( - ^ - i - ^ ( 2 + 4 0 ^ 2 ) ( 4 0 2 „ _ 1 ^ ( 5 - f 2 0 0 ^ 2
+ 4 0 2 ^ 4 „ ) 

+ 6(-l)3<n-1>(2 +160 ̂ 2 4402 ^ 2 ))) 
and 

X9„ = ^„( l + (2 + 40££2X(40^2)(5+200^2 +402 ̂ 2 ) + 2(-l)"'(2 + 160^2 +402 #!))). 
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Let n = 4, then X3 = 37, X4 = 228, so 

^35 = "(-37 - 228(2 + 40(228)2)(40(37)(228)(5 + 200(228)2 + (40)2(228)4) 
- 6(2 +160(228)2 + (40)2(228)4))) 

-691694313282196669127860165 
and 

5636 = 228(1 + (2 + 40(228)2)(40(228)2(5 + 200(228)2 + (40)2(228)4) 
+ 2(2 +160(228)2 + (40)2(228)4))) 

=4262412414404388836310914052, 

which are correct. 

4 SHORT PERIODS 

The following theorem is our main result. It gives families of moduli with short periods. 
These families are given by divisors of the polynomials bR2j(b) evaluated at numbers in the 56„-
sequence. 

Theorem 12: Let m divide £nR2j(Xn). 
(i) If t is even, then k(m)\4jnt. 

(ii) If t is odd but jnt is even, then k(m) \ 2 jnt. 
(Hi) If jnt is odd, then k{m) \4jnt. 

Proof: First, consider (i) and (ii), where we have jnt is even. Let a = Xn_x and h = Xn in 
Theorem 10 and note that all the terms of v(j) are divisible by m except the (-l)jnt. With this 
substitution, v(j) gives the ^-simplification of the first row ofTlin. Also using Theorem 6, we see 
that W = {\0) = {{-\Tl%ijn-i>%2jny Thus> ^ ^ ( - l y ^ m o d m and X1Jn = 0 mo&m. 
Hence, by Theorem 5, k(m)\4jnt if if is even and k(m)\2jnt ift is odd. 

Now, in part (iii), jnt is odd. The same idea as above works except that v(/) = (-l, 0) = 
((-l)'"1 &2jn~i> ^ijn)' Thus> ^ijn-i = ~l m o d m mA ^2Jn = ° modw. Now the identities for 
^2^.! and X2n given after Corollary 7 allow us to see that t£4jn-i = 1 (remember t is odd), and 
a£4jn = 0. Now Theorem 5 gives k(m)\4jnt as desired. D 

Notice that the bounds for k in all cases are linear in n, while '56 w, and hence the modulus, is 
exponential in n. Thus, we can construct families of moduli having periods logarithmic in the 
modulus. In Table 3, the example of a = [1,1,2] with m = i^(£6n) is considered. Notice the large 
m. 

Now we can explain, up to a factor of 2, all of the periods less than the linear upper bounds 
given for the primes in Table 1. Table 4 gives a list of i?2y(<S6w) that are divisible by those primes. 
The upper bounds for the periods given in Theorem 12 fully explain the periods that actually 
occur in this table, except those marked with an asterisk where the upper bound is twice the 
actual period. 
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TABLE 3 

Logarithmic Bounds on Periods for a Family of Moduli for a = [1,1,2] 

n 

2 
4 
6 
8 
10 
12 
14 

n 

1 
3 
5 
7 
9 
11 
13 
15 

o& W 

6 
228 
8658 

328776 
12484830 

474094764 
18003116202 

o£« 

1 
37 

1405 
53353 

2026009 
76934989 

2921503573 
110940200785 

m = R6(X„) 

1443 
2079363 

2998438563 
4323746327043 

6234839205156003 
8990633810088627843 

12964487719308596192163 

m = R6(£„) 

37 
54757 

78960997 
113861704357 

164188498723237 
236759701297204837 

341407325082070653157 
492309126008644584648997 

2jnt 

36 
72 
108 
144 
180 
216 
252 

4jnt 

36 
108 
180 
252 
324 
396 
468 
540 

TABLE 4 
Values of R2j(31n ) Explaining Short Periods 

*13 
19 
37 
*53 
59 
*67 
103 
131 
137 
167 
179 
*191 
*197 
233 
*241 
*263 
*271 
277 

J«22) 
^(2i) 

^(2i) 
^ ( ^ 2 ) 

^ ( ^ 5 ) 

^22V° ^2) 
i^(££2) 

^ 4 ) 

^•6(^2) 

^(^14) 

^>(<^2o) 

^38(^2) 

^14(^14) 

^(^26) 

^>C^io) 
^16(^22/ 

^(«^io) 
i^6(££2) 

281 
*317 
*397 
419 
*431 
*439 
449 
461 
491 
503 

*521 
571 
601 
*613 
*631 
647 
*653 
659 

R10(X2) 
R\5S\°^2) 
^18V°^22) 

^(^2o) 

^86(^2) 

^45(^2) 
i?g(i£7) 

^14(^ll) 

^82(^4) 

^(^24) 

Rzei^io) 
i^(^13) 

Ao(^15) 
^4(^18/ 

^8(^15) 

^(^24) 

^326 (^2) 

^2(^20) 

*677 
733 
761 
*773 
*797 
809 
821 
•827 
829 
*853 
857 
859 
881 
•883 
*911 
929 
937 
*997 

^26V^26/ 

^122(^2) 

^lo(°^38) 

^386\° ^2) 

^398 (^2) 

^202V=^2) 

^274(^2) 

^118(^2/ 

^166(^2) 

^142(^6) 

^ 6 ( ^ 2 ) 

B,(X5) 
^ ( ^ 2 2 / 
ii14(oi.14) 

^26(^14) 

^16 (^29/ 

^134(^2) 
R166(^6) 
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