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INTRODUCTION 

The so-called Ducci-sequences (or n-number-game) have recently been studied by several 
authors in this review (see [1] , [5], [6], [12], [17], and others). A Ducci-sequence is a sequence 
of w-tuples Aj = (aha2, ...,a„); the first w-tuple 4) is any given n-tuple with nonnegative integer 
entries, 4+1 •= 2T4? where 2T is defined as follows: 

2T4 :=(\al-a2l\a2-a3l...,\a„-al\). 

The w-tuple Ai+l is called the (direct) successor of 4 , whereas 4 is the predecessor of Ai+l. As 
the maximum entry of the w-tuples cannot increase under the application of 2T and therefore the 
number of successors of any 4) *s bounded, the sequence always leads to a cycle of repeating 
w-tuples or to the n-tuple (0,..., 0). If an w-tuple 4) gives rise to the latter, it is usually called 
vanishing. 

First, it will be shown in this article that the Ducci-sequences are closely related to Pascal's 
triangle and many properties of their cyclic structures can be found and proved considering 
Pascal's triangle modulo 2. In the second part we will examine whether, for a given n GN there is 
such anMthat 2M = -1 mod n, which is crucial for some properties of the Ducci-sequences. 

We would like to thank the referee for a number of valuable suggestions. 

SOME BASIC PROPERTIES AND DEFINITIONS 

It is a well-known fact that every «-tuple with integer entries vanishes if and only if n is a 
power of 2 (e.g., [4]). On the other hand, the ^-tuples in the cycles of the Ducci-sequences are 
constant multiples of binary ^-tuples ([6], [3]). As 2T(/L4) = X^FA for every X GN 0 , we can limit 
any investigation of cycles to n-tuples over Z2. Since \a - b | = (a + b) mod 2 for all integers a and 
ft, we can use the linear operator 2) instead of 2T, where Q)A : = {ax + a2, a2 + a3,..., an + a{) mod 2 
and A is a binary 7?-tuple. The operator 2 can be written as the sum of two linear operators over 
Zj*. 2) = 3 + K, where $ is the identity and KA := (a2, ...,an, a{). Obviously, we get W = $ and 
2T1 = ye~\ where X"1 is the inverse operator of K. 

We denote the k^ successor 2^4) °f a giy e n binary w-tuple 4) a s A • ^ ^ ls necessary 
to describe the entries of a certain successor Ak, we will use two indices and write Ak = (akly ...9 

aki„). Then we get: 
4fc+U =ak,i +ak,i+l-

The subscripts denoting the place in the ^2-tuple are always reduced modulo n, using n instead of 
0. 
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Ehrlich proved in [6] that the »-tuple AQ = (0,..., 0,1) (and every cyclic permutation of AQ) 
produces a cycle of maximum length. The length of all other cycles of n-tuples of a given n divide 
this maximum. The sequence {Ak} is called the basic-Ducci-sequence {of n-tuples) and the 
length of its periodic cycle is denoted as 2P(»). For every odd n, the first «-tuple in a cycle is 
2)4) = Ax = (0,..., 0,1,1). Further, Ehrlich stated the following theorems: 

\i1m = \ mod n, then <3>{n) divides 2m - 1 . 
If 2M & -1 mod n, then #>(«) divides n(2M -1). 
If n is not a power of 2, then n divides 2P(«). 
If» = 2rl, where £ is odd, then 2P(«) = 2r<3>(£). 

(1) 
(2) 
(3) 
(4) 

Before we take a closer look at the properties of Pascal's triangle, we will state a theorem that 
allows a new approach to our problem. 

A NEW APPROACH TO AN OLD PROBLEM 

In Pascal's triangle, we find the binomial coefficient (f) of the ?th place in the kth row. The 
0th row consists of a single one. When we place zeros left and right of the triangle, we can obtain 
any element by adding the two elements to the left and right above its place. This is easy to see, 
knowing the formula for adding the binomial coefficients: 

k 
z + 1 

£ + 1 
i + l 

We will limit our investigation to Z2, and thus every binomial coefficient shall be considered 
modulo 2. Pascal's triangle modulo 2 with n rows (i.e., row 0 to row n-\) will be denoted as 
PTn. The number of a chosen row shall be denoted as k. We fill up every k^ row of a PTn with 
n - k -1 zeros on the left side. By shifting to the right and considering the rows as w-tuples, we 
obtain a square of n different w-tuples. 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 /1 
0 0 /1 1 
0/1 0 1 

A l l ! 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0/4" 
0 0/1 1 
0/1 0 1 

A i i i 
0 0 0 /1 
0 0/1 1 
0/1 0 1 

/ f i l l 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 /1 
0 0 /1 1 
0 /1 0 1 

A i i i 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
o o oA 
0 0/1 1 
0/1 0 1 

A i i i 

0 0 0/41 
0 0/1 1 
0 /1 0 1 

A i i i 
0 0 0/L 
0 0/4 1 
0 /1 0 1 

A i i i 
0 0 0 /1 
0 0/1 1 
0 /1 0 1 

A i i i 
0 0 0 /1 
0 0/L 1 
0 /1 0 1 

A i i i 
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The 7th entry in the kth row will be denoted as ak>i. We obtain: 
JO \ \<i<n-k-\ 

fl*'' = lG4J -n-k<i<n. 
Adopting the above formula for the binomial coefficients, we get ak+lJ = akJ + akJ+l: 

• \<i<n-k-2:ak+li=0 = akJ+akJ+l. 

• w-& <i <rc:ak+lJ =(._£J+1) = ( , 4 J + (._^+1) = aM + aM+1. 

Considering that the ?i-tuple in the 0th row is (0,..., 0,1) = AQ, the first /2-tuple of the basic-
Ducci-sequence, we have shown 

Theorem 1: The n rows in the modified Pascal triangle (as shown above) are the n-tuples AQ, Au 
..., An__l of the basic-Ducci-sequence. 

We will now take a closer look at Pascal's triangle. This triangle shows an interesting geom-
etry which is closely related to that of the Sierpinski gasket (cf. [14]). Therefore, the PTr for 
r GN can be constructed recursively. For a given PTr, r GN, we get PTr+i by placing two 
Pier's at the corners of the base of the first PTr and filling up the empty triangle with zeros: 

2 r+ l 

This construction can be proved using a lemma of Hinz ([8], p. 541). 

Lemma 1: For 0 < k, i < 2\ and r GN0, it follows that 

( 2 7*M<) m o d 2 ' 
In [8] we can find some additional facts that have been stated by Lucas [10] and Glaisher 

(reference can be found in Stolarsky [16]) and can be proved with the help of the above lemma 
([8], p. 539): 

• For 0 < i < k, the binomial coefficients (*) are all odd if and only if k = 2r -1 for 
some r GN0. (5) 

• For 0 < i < k, the binomial coefficients (J) are all even if and only if A: is a power 
of 2 (the outer elements are 1). (6) 

• Let fi(k) be the number of ones in the 2~adie expansion of k GMQ. Then the 
number of odd binomial coefficients (J) for 0 < i < k is 2^(/c). (7) 
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The advantage of using PTn for examining the Ducci-sequences is the fact that many properties of 
the cycles can easily be seen. Regarding the fractal geometry of the triangle, the results can be 
observed for small n and generalized for higher ones. For example, if we take a look at the PT2r, 
we see that the row 2r - 1 contains only ones. This leads us to an easy proof of the well-known 
fact that every 2r-tuple with integer entries vanishes (see [4], [7], [3], et al.). 

In the same way, we can prove all the following new results. As some of the proofs are quite 
long when using exclusively Pascal's triangle, we will adopt other techniques as well. 

CYCLES OF SOME DUCCI-SEQUENCES 

Following Ehrlich [6], we say n is with a -1 if n GN is odd and there exists a n M e N with 
2M = -1 mod n; otherwise, we call n without a -1 . We will now give a lower bound for ^(n) 
for every n with a -1 [for an upper bound, see (2)]. First, we have to state the following lemma. 

Lemma 2: Let n be with a -1 and k eN, k > 1. Then 

2>*(2W~1)+1 = 9 r t > . 
Proof: We proceed by induction using Ehrlich's Lemma 1 ([6], p. 302): 

2m^tmodn=><3)2m =$ + W!. 

Let k = 1. Then we get 
3 ( 2 - - I H I = # " = £ + ^ 1 = ^ 1 3 , . 

Assume now that the statement is true for k GN. It follows by computation that 

This lemma leads to 

Theorem 2: For n with a - 1 , every cyclic permutation of Ax = (0,..., 0,1,1) can be found in the 
basic-Ducci-sequence. 

Proof: As n is odd, the w-tuple Ax is the first w-tuple in the cycle of the basic-Ducci-
sequence and Ax = 2)(0,..., 0,1). Using Lemma 2 above, we obtain 2J*(2A/"1)+14, = ^Ck2bA<j and 
therefore (dbK2M~l)Al = ^CkA1 for every k eN. D 

Obviously this result implies that, for every n with a - 1 , the cyclic permutations of (0,..., 0,1) 
give rise to the same cycle, and so there exists only one cycle of maximum length. 

Theorem 3: For n with a - 1 , we get ?P{n) > n(n - 2). 
Proof: We have to determine the minimum number of applications of 2) for obtaining the 

first cyclic permutation of Al in the basic-Ducci-cycle. We use Pascal's triangle. A permutation 
of Ax consists of two adjacent ones (where alx and aln are considered as being adjacent as well). 
Since the last and the first entry of Pascal's triangle are always ones, the number of ones in every 
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row Is at least 2. Thus, we can (possibly) find a cyclic permutation of Ai for the first time when 
the first and the last entry of Pascal's triangle can be considered as adjacent ones in an «-tuple, 
which is to say that akl = \. Regarding the construction of ^-tuples from Pascal's triangle, it 
follows that k = n-l9 that means after n-2 applications of 2) on Ai. We use the same argument 
for the successors of the first permutation of Ax, and the proof is complete. • 

This theorem gives rise to an important result. 

Theorem 4: For n with a - 1 , it follows that 
(3>(n) = n(n-2)on = 2r+l, r eN. 

Proof: 
"<=" Ifrc = 2r + l,then 2r = n-l = -l mod n and from Theorem 3 we get ^P{n)> n{n-2). 

On the other hand, &(n) divides n(2r -1) = n(n - 2) [see property (2)], and so n(2r -1) = n(n - 2). 
"=>" As n is with a - 1 , the proof of Theorem 3 shows that tyQi) = n(n-2) if and only if the 

w-tuple An_l is a permutation of Av According to properties (6) and (7), we obtain exactly two 
ones in a row of Pascal's triangle if and only if the number of the row is of the form 2r +1. Con-
sidering that the ones are adjacent if and only if the w-tuple that is formed from the row 2r +1 of 
Pascal's triangle is not filled up by zeros, i.e., n = 2r +1, we have shown our statement. D 

Furthermore, we can extend Theorem 4 for every even n with n = 2r + 2s. 

Theorem 5: If n = 2r +2S for r > s> 0, then 9(n) = *n~£*l). 

Proof: By using Theorem 4 and Ehrlich's formula (4), we obtain 

2P(2r+20 = 2^(2r"* + l) 
= 2*(2r-* + l)(2r-*-l) 
^ (2 r + 2')(2r-2') 

2s 

= n(n-2s+l) 
2s ' 

As mentioned above, Ehrlich [6] was able to describe the first w-tuple in the cycle of the 
basic-Ducci-sequence if n is odd. Nothing is yet known about the case in which n is even. We 
will be able to give a partial solution at this time. 

Theorem 6: For n - 2r + 2\ r > s > 0, the /i-tuple 
^ = ( 0 , . . . , 0,1,0,. ..,0,1) 

n-2s-l 25+l 

is the first «-tuple in the cycle of the basic-Ducci-sequence. 

Proof: 
1. The w-tuple is contained in the cycle. 
Pascal's triangle PTn shows us that 
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4 , = ( 0 ^ , 1 , ( ^ 0 , 1 ) 
2 2 - l 2 r + l 

is a successor of 
4 , = ( 0 ^ , 1 , 0 ^ , 1 ) . 

2 r - l 2s_x 

Obviously, Ar is a cyclic permutation of Ar: ^ = HC2 Ar. On the other hand, we have Ar = 
2)2 ~2 ̂ 2J. We can conclude that 

Q^Ar=K-nA2S = Ar 

and, therefore, Ar is contained in the cycle. Keeping in mind that the first and the last entry of 
PTn are always 1, and counting the consecutive zero-entries, we obtain that Ar is the only cyclic 
permutation of A2, among its successors A^ ,..., Ani which are contained in the (modified) PTn. 
Therefore, we have even shown that Ar is the first of the cyclic permutations of A^ that appears 
in the cycle. 

2. Ar is the first «-tuple in the cycle. 

The n-tuple Ari is the predecessor of A%s. We suppose that Ar_x is contained in the cycle. 
It follows from above that the predecessor A^, i.e., Ar_v is in the cycle. Therefore, A^ must 
be a cyclic permutation of ^ 2 M - A look at PTn shows that A2, contains 2s ones, and in A^ 
we can find 2r ones [see property (7)]. This is a contradiction to the assertion, as r > s. • 

Corollary 1: If n - 2r + 2\ r > s > 0, then there are 2s different cycles of maximum length that 
are produced by the cyclic permutations of the w-tuple AQ. 

Proof: The operators 2) and W commute, so 

®r-rAr=®r-rX-rA2S 

= K-r®r-rAr='X-2-2°Ar. 

By induction, every w-tuple Wn A s, £ GN, appears in the cycle of the successors of (0,..., 0,1). 
Using the same argument as in the proof of Theorem 6, we conclude that for every £ the n-

tuple $£"^+1)2 Ar is the first cyclic permutation of ^Cn A^ among the successors of the latter. 
As 25|2P(«), no other cyclic permutation than the ones described above can be found in the cycle 
produced by (0,..., 1). 

We use the same technique for the successors of %C1A0, <%C2 A$,..., K~r+1 AQ . D 

We will now consider 2r -1-tuples. Using Pascal's triangle, we can determine &(ri) for 
n = 2r-l. 

Theorem 7: If r GN and n = 2r -1, then 2P(«) = n. 

Proof: Using the proof of Theorem 3, we see that no cyclic permutation of Al can be found 
in fewer than (n - 2) steps. Pascal's triangle shows that 
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^ = ^ 2 4 = a 0 , 1 , 0 , ...,i,o,i). , 

Then 4 = (1,1,..., 1,0) and4,+1 = (0,0,..., 1,1) = 4 . • 

Corollary 2: For r > 2 and n = 2r - 1 , no cyclic permutation of Ai can be found in the basic-
Ducci-sequence, and there are n different cycles of maximum length. 

Again, we can extend the last theorem. 

Theorem 8: Ifn = 2r-2\r>s>0, then 8P(w) = n. 

Proof; We prove this theorem using Ehrlich's formulas: 

®(2r -2s) = V®(2r-s -l) = 2s(2r-s -l) = n. D 

It can be shown that only for such an n does the length of the cycle of the basic-Ducci-
sequence equal n. 

Theorem 9; If 2P(w) = n, then n = 2r -2\ where n > 2 and r > s > 0. 

Proof: Using properties (3) and (4), we can limit our investigation to odd numbers. Then 
the first w-tuple in the cycle is Ax = (p,...,0,1,1). There are only two different (possible) prede-
cessors of Ax\ the n-tuple (0,..., 0,1) or the n-tuple B := (1,..., 1,0) (see [11]). As the first n-
tuple is not in the cycle, the predecessor of Ax in the cycle must be B. As 2P(«) = n, it follows that 
B- An. Since every binary w-tuple has exactly two predecessors, the predecessor of B is either 
C: = (1,0,1,0,..., 1,0,1) o rD:= (0,1,0,1,..., 0,1,0). We consider PTn. The last row represents 
4,-1, i.e., C or D. It follows from Theorem 1 that the first entry of An_1 must be 1; thus, the 
predecessor of B in the cycle is C. If we consider PTn+v then its last row must consist entirely of 
ones because C is the second to last row of PTn+l. Property (5) shows that all the entries are ones 
if and only if n +1 is a power of 2 and n = 2r -1 for some r > 2. (For n = 21 - 1 , the Ducci-
problemi makes no sense). • 

As above, we can answer the question: Which w-tuple is the first one in the cycle? 

Theorem 10: The 2r - 2s -tuple 42, where n > 2 and r > s > 0, is the first one in the cycle of the 
hasic-Ducci-sequence. 

Proof: 
L The ??-tuple is contained in the cycle. 
From Pascal's triangle, we can conclude (using the recursive construction given above): 

4 . ^ ( 1 ^ , 0 ^ , . . . , ^ ^ . 
2s 2s 2s 

We obtain alternating blocks of 2s ones and 2s zeros, the first and the last block consisting of 
ones. For An7 we conclude: 

4 = (01:^,...,W 
2s 2s 2s 
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As the first nil2 -I blocks can be considered as the first elements of a basic-Ducci-sequence of 
2^-tuples, the next successors are easy to determine. After 25 - 1 applications of 2), we find 

n-2s 2s 

It follows that 
An+r = ( 0 ^ , 1,0,...,0,1) = A2,, 

n-2s-l 2*+l 

and the w-tuple An is contained in the cycle. 

2. Ar is the first w-tuple in the cycle. 
Using 2P(«) = «, we can conclude: If A2S_X is contained in the cycle, then A^ = 4. s . 

The first entry of A^, must be 0 (see construction of w-tuples from Pascal's triangle). On the 
other hand, we have shown above that an+2s_x l = I, which is a contradiction. D 

THE PROBLEM "WITH" OR "WITHOUT" A -1 

The question whether a given n is with or without a -1 is important for different theorems 
and properties of Ducci-sequences [see Theorem 4, properties (1) and (2)]. 

As every integer n can be considered as a product of prime numbers p, the problem can be 
divided into two separate questions: 

• Which prime numbers are with a -1 , which are without? and 
• If m,n EM and with (-out) a - 1 , is the product with (-out) a -1? 

Prime numbers will be treated first. In the following, p shall denote an odd prime number and 
Op(2) shall denote the order of 2 in a cyclic group of unities of the Galois-field Zp. We keep in 
mind that Op(2) is a divisor of <p(p)—Euler's ^-function—and <p(p) = p-1. 

The case p = -1 mod 4 is easier to examine. 

Lemma 3: Let p = -l mod 4, then Op(2) is odd if and only if —^ is even. 

Proof: We consider p = -1 mod 4 first and show the equivalence of three statements: 
1. Op(2) is odd if and only if 2 is a square number in Z 

is odd, we obtain "=>" Since, by assertion, O (2) is odd, we obtain 

and 2 is a square number in Z . 

"<=" 2 = a2 mod/? for some a eZp. By Fermat's theorem, ap~l = 1 mod/7 and, as 2\p-\ 
(p odd!), we conclude: 

ap-l = (<£f^ = l mod/? 
=2 

P-\ 

and, further, 2 2 = 1 mod p. 
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Using p = -1 mod 4, we get p - 1 = -2 mod 4, and ^ must be odd. 

2 2 is a square number in Zp if and only if (^) = 1 (Legendre-symbol), which is equivalent to 

^ PZ~I 

= ( - 1 ) ^ = 1. 
J?) 

3. j^p is even if and only if £-^- is even. We can write p as p = -1 + 4&, k GN. Then it 
follows that p2 = 16£2 - 8* +1 or ^~ = 2k2 - k. 

As 2&2 is always even, we conclude that £-^L is even if and only if A: is even. D 

Theorem 11: Let p = -1 mod 4. Then/? is with a -1 if and only if ^ is odd. 

Proof: 
"<=" We consider the equation x2 = 1 mod p. As Zp is a Galois-field, the equation has 

Op(2) 

exactly two solutions: x = 1 mod p and x = -1 mod p . 2 2 is an integer solution of this equation 
D+l Op(2) 

if and only if Op(2) is even, i.e., -^j- is odd for p = -1 mod 4 (Lemma 3). As, by definition, 2 2 
QP(2) 

cannot be congruent to 1 modp, we have 2 2 = -1 modp mdp is with a - 1 . 
"=>" If 2M = -1 modp, then it follows that 2M\Op{2), and so the order of 2 is even. From 

Lemma 3, it follows that -̂ p- is odd. D 
Let p be with a -1 and M be the least integer number with 2M = -1 mod p, M-2kt where 

A: > 0 and t is odd. For our further examination, we need to know that k = 0. We will use a well-
known theorem from number theory. 

Theorem 12: The congruence x2 = -1 modp has a solution in Zp if and only if p = 1 mod 4. 

This theorem leads us at once to the following corollary. 

Corollary 3: Mis odd for every p = -1 mod 4. 
M. 

Proof: We assume that M is even. Then a = 22 satisfies the equation x2 = -1 in contradic-
tion to the above theorem. D 

The case p = 1 mod 4 is harder to treat because the above argument cannot be used in this 
case. We will give only a partial solution. 

Theorem 13: Let p = 1 mod 4 and ^ be odd. • Thenp is with a - 1 . 

Pi*oof: We again use 

Since ™p is odd (p = 1 mod 4) as well as ^ p (by assumption), we conclude that 2 is not a square 
number in Zp. Using 2 p =2 modp, we see that Op(2) + l must be odd and Op(2) is even. 

q,(2) 
By definition, 2 2 cannot be congruent to 1, sop must be with a - 1 . D 

1995] 321 



DUCCI-SEQUENCES AND PASCAL'S TRIANGLE 

If -£p is even, both cases are possible: 
• 17,41,97, 113 are with a - 1 ; 
• 73, 89, 233 are without a -1 . 

As the problem is linked to the still unsolved Artin's Problem (see [2], p. 113), the complete solu-
tion seems to be very difficult but interesting. 

We also cannot determine whether Mis even or odd. In most cases, Mis even; however, for 
281, we obtain M = 35. This question will be important in our further examination. 

We will now treat products of prime numbers. 

Lemma 4: Let/? be with a - 1 . Then pn is with a -1 for every nsN. 

Proof: By induction. Let p" be with a -1 for some n and 2M = -1 mod p". Then 2M = 
-1 + kpn for some k. We compute: 

2pM = QMy = (_l + ̂ y = - l + ̂  + ̂ - i y + ^ J i / + / / ^ . 

As (f) is divisible by p for 2 <i <p-1, we obtain 2 ^ = -1 mod pn+1. As the lemma holds for 
n - 1, the proof is complete. • 

(For a similar problem, see [13], pp. 364 ff.) 

Theorem 14: Let n = p1p2...pi, the product of odd prime numbers pi (not necessarily different 
from each other) and (at least) one of the pi without a - 1 , Then the product n is without a - 1 . 

Proof: Without loss of generality, let pi be without a - 1 . We assume that n is with a - 1 , 
which means that there exists an M GN with 2M = -1 mod «. This implies that 2M = -1 mod /?j 
in contradiction to the choice of pv D 

Theorem 15: Let ^ and m be odd integers with a - 1 , (/, /w) = 1,2L = -1 mod £ and 2M =s= -1 mod 
m (L and M minimal). Then n- £m is with a -1 if and only if, for some k GN0, 2k divides L and 
M, and 2k+l divides neither of them. 

Proof: 
"<=" Obviously LI2k mdM/2k are odd numbers. We compute: 

M. AL 

(2LY = (-1)2* mod £ s -1 mod *; 

(2^)2* = (-1)2* mod w s -1 mod m. 
LM 

It follows that 22* = -1 mod n &sn = £m. 
" =>" By contradiction: 

Assume, without loss of generality, that 2N = -1 mod «, 2*|Z, 2^+1|Z, and 2/:+1|M and N is 
minimal. This implies that 2N = -1 mod w, 2^ = -1 mod / , and that JV is the least common mul-
tiple of L and M. Therefore, Nis divisible by 2k+l and N = 2LR for some i? eN. It follows by 
computation that 
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2^ _ 22LR — (2L\2R 

= (-lfR mod t = 1 mod I, 

which is a contradiction to 2N = -1 mod I as t ^ 2. • 

Corollary 4: If ph...,p£ are prime numbers, #• = -1 mod 4, and ^ ^ is odd for every ! < / < / , 
then n = p\x...p\l is with a - 1 . 

Proof: Since ^ is odd, /? is with a -1 by Theorem 11. By Lemma 4, /?* is with a - 1 . By 
Corollary 3, Mis odd, where 2M = -1 mod p. By the proof of Lemma 4, 2/,*~,A/ = -1 mod pk; of 
course, the exponent pk~lM is odd. This is true for each prime p. The result now follows by 
Theorem 15. • 

(For a similar result, see [13], p. 364.) 

REMAINING QUESTIONS 

During our investigation, we have seen that the Ducci-problem is closely linked to the 
problem of finding the order of 2 in a given field Zp. It seems that this problem is not yet com-
pletely solved. 

Going back to the Ducci-sequences, it is interesting to ask how many different orbits the 
operator 2) (and therefore 2T) produces if all Ducci-sequences are considered. If n is not a power 
of 2, let k be the number of divisors m of n (where m < n). Then we can find at least k + 2 
different cycles: the cycle that contains only the n-tuph (0,..., 0), the cycle of the basic-Ducci-
sequence of w-tuples and the cycle of ̂ -tuples that are formed of the nlm-ibid repetition by the m-
tuples of the corresponding basic-Ducci-sequence. 

A whole range of new problems can be obtained using a variation of the process of forming 
the Ducci-sequence (first done by Wong [17]), for example: 

2/~(al3 ...,an):=((al+a2) modk9...,(an^ai) m^dk), k GN. 

Many interesting results on that topic can be found in [17], but the length of cycles of so-called 
Ducci-processes has not been treated yet (except the above variation in [15]). 
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