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1. INTRODUCTION 

In 1963, D. R. Kaprekar [1] introduced the concept of self-numbers. Let k>\ be an arbi-
trary integer. A natural number m is said to be a £-self-number iff the equation 

m-nJrdk(ri) 

has no solution in an integer n > 0, where dk(n) denotes the sum of digits of n while represented 
in the base k. Otherwise, we say that m is a ^-generated number. And m is said to be a universal 
generated number if it is generated in every base. For example, 2, 10, 14, 22, 38, etc. are univer-
sal generated numbers. The number 12 is 4-generated by 9, but it is a 6-self-number. 

In 1973, V. S. Joshi [2] proved that "if k is odd, then m is a &-self-number iff m is odd," i.e., 
every even number in an odd base is a generated number. 

In 1991, R. B. Patel ([3], M.R. 93b: 11011) tested for self-numbers in an even base k. What 
he proved is: 2ki, 4£ + 2, k2 +2k + \ are ^-self-numbers in every even base k > 4. 

In the present paper, we first prove some new results on self-numbers in an even base k. 

Theorem 1: Suppose 

m = b0+blk, 0<bQ<k, 0<b{<k, 2\k, k>4. 

Then m is a &-self-number iff bQ - bx = -2. 
In particular, 2k, 3& + 1, 4£ + 2, 5£ + 3, etc. are ^-self-numbers. 

Theorem 2: Suppose 

m = b0+blk+b2k2, 0<b0<k, 0<b{<k, 0<b2<k, 2\k, k>4. 

Then m is a &-self-number iff b0, bh and b2 satisfy one of the following conditions: b{ = 0, bQ-bx-
b2 = -4 or k-3; bx = l, \ - \ - b 2 =-2 or - 4 ; b-x-2 or3, i 0 - 6 1 - i 2 = - 2 ; bx>4, bQ~bl-b2 = 
-2 or - k - 3. 

In particular, k2 +k, k2 +2k + l, k2 + 3k + 2, 2k2 +A + 1, 2k2 +2k + 2, 3k2 +k + 2, 5k2 + l 
(k > 6), 4k2 + * +1 (£ > 6), 5^2 -k (k> 6), £3 - A:2 + 4k, etc. are £ self-numbers. 

Secondly, we study the number G(x) of universal generated numbers rn<x. It is not known 
if G(x)^co but, as an ingenious application of Theorem 1, we prove that G{x)<2^fx. As a 
matter of fact, we obtain 

Theorem 3: Every universal generated number can be represented in only one way, in the form 
2sn + 2s~l - 2, with s > 3, n < 2s'2. Moreover, for all x > 1, one has G(x) < 2jx. 
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2, PROOF OF THEOREM 1 

If possible, let m be ^-generated by some w, where 
t 

n = ̂ atk\ Q^c*i<k, 0<i<t. 

Then 
t t 

4 W r I ^ and m = w + rfJk(w) = ^a r . (* / + l). 
/=o /=o 

Since m = b0+bxk <k + (k- l)k = i 2 , w e have a, = 0 for / > 2, i.e., 

b0+blk = 2aQ+ax(k + l), 0<a 0 , ax<k. (1) 

Here at > ftx or ^ <£x - 2 is impossible, so that ax=bx-i, 0 < i < 2. 
(A) If i = 0, then (1) holds iff b0 -bx > 0 is even; 
(B) If i = 1, then (1) holds iff bQ - bx < k - 3 is odd; 
(C) If i = 2, then (1) holds iff ^ - ^ < - 4 is even. 

Hence, m is a A>self-number iff b0-bx = - 2 o r k - 1 . The latter is impossible because b0< k-\. 
This completes the proof of Theorem 1. 

3, PROOF OF THEOREM 2 

If possible, let m be ^-generated by some n. As in the proof of Theorem 1, we have 

b0+bxk + b2k2 = 2aQ+ax(k + l) + a2(k2 +1), (2) 

with b2-\<a2 <b2. 

Case I. a2-b2. From (2), we see that ax<bx. Taking ax=bx- j , j > 0, we have 

b0-bx-b2 +j(k +1) = 2a0. (3) 

Noting that 0 < a0 < k, one has: 
(A) If y = 0, then (3) holds iff bQ - b x - b 2 > 0 is even; 
(B) If jf = 1, then (3) holds iff b0 - bx - b2 > -k - 1 is odd and bx > 1; 
(C) If jf = 2, then (3) holds iff b0-bx-b2< - 4 is even and bx>2\ 
(D) If 7 - 3, then (3) holds \ffbQ-bx-b2 <k-5\s odd and bx > 3; 
.(E) If j > 4, then (3) never holds. 

Case II. a2 = b2 - 1 . Taking ax = k-j, j > 1, it follows from (2) that 

( 6 1 +y - l )£ = 2 a 0 - y - l + 62-Z>0 

or 
b0-h2 + (bl+j-l)k + j-l = 2*0. (4) 

Since 2a0 -j-l+b2 -b0 <3(&- l ) , one has ^ 4 - j - l < 2. Noting that 0 < a 0 < £ - l , one has: 
(A)f If ^ = 0, j = 1, then (4) holds iff 60 - 62 > - 2 is even; 
(B)f ifbl = 0J = 2, then (4) holds iff b0 -b2 < k - 5 is odd; 
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(C)' If bx = 0, j = 3, then (4) holds iff bQ - b2 < -6 is even; 
(D)' lfb1 = l,j = l, then (4) holds iff b0 - b2 < k - 4 is even; 
(E)' If Aj = 1, y = 2, then (4) holds iff Z>0 - 62 < -5 is odd; 
(F) If^ = 2, 7 = 1, then (4) holds iff b0-b2 < -4 is even; 
(G) If ^ > 3, then (4) never holds. 

Thus, (A)', (B)', and (C)' together imply that if \ = 0, (4) does not hold iff b0-b2 = -4 or 
k-3, i.e., b0 -bx -b2 = -4 o r k - 3 . According to Case I, (2) has no solution iff b0-b1-b2= -4 
or k - 3. 

If b{ = 1, (D)' and (E)' together imply that (4) does not hold iff b0-b2>k-4 ork-4> 
bQ-b2>-5 is odd, i.e., bQ -bx -b2 > k o rk-5>b 0 - \ -b2 > -6 is even. According to Case I, (2) 
has no solution iff bQ - bx - b2 = -2 or - 4. 

If bx = 2, then from (F) (4) does not hold iff b0-b2> -4 or is odd, i.e., b0-bl-b2> -6 or is 
odd. According to Case I, (2) has no solution iff b0-b1-b2 = '-2. 

If Z>!>3, (4) never holds. According to Case I, (2) has no solution iff bQ-bx-b2 ~-2 or 
-k-3. For the latter, bx > 4. This completes the proof of Theorem 2. 

4. PROOF OF THEOREM 3 

Let fs(n) denote 2 ^ + 2*- 1-2, where s> 1 <mdn> 1. Then fl(n) = 2n-l, f2(n) = 4n, 
f3(n) = $n + 2, f4(n) = 16n + 6, ... . Noting that fP(n) = f (n^ iffn-n^ s = sly one has from the 
fundamental theorem of arithmetic: every positive integer can be represented in only one way, in 
the form 2sn + 2s~l - 2. If s = 1, n > 2, it is clear that f^ri) = 2n-l is not generated by 2n. If 
s>2, taking b0 = 2s~l - 2 , bx - 2s~l, k = 2n, and applying Theorem 1 we see that fs(n) is a Ar-self-
number, i.e., it is not a universal generated number if n > 2s'2. Moreover, 

G(x)< £ 1 <£min{2*-2,x/2*}< £ 2s'2 + £ x/T <2<sfc. 
l<2J«+2i"_1-2<x s^l j<(l/2)log2JC+l ^>(l/2)log2x+l 

^>l,«<2-y"2 

This completes the proof of Theorem 3. 
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