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In [2] and [3] we used the T transformation of sequences of integers (w„), defined by T(un) = 
xun+k -w„, to prove in a simple way properties of periodicity modulo a given prime p for (un) 
satisfying several types of second-order linear recurrences. 

The aim of this note is to extend these early results to more general forms of the transforma-
tion and of the sequence (un). 

Theorem 1: Let un, n > 0, be the general term of a given sequence of integers and define the 
transformation T^yk)(un) as T^xyJc){un) = xun+lc +yun for every n > 0, A: being a positive integer. 

Then, if x mdy are nonzero integers and there exists a positive prime number/? which divides 
T(x,y,k)(un) f°r every n>0 and is relatively prime to x, the distribution of the residues of (un) 
modulo p is either constant or periodic with period k(p -1). 

Proof: If(T(un)Ym) denotes the m* iterate of the transformation T^yk) on (un) for given x, 
y, and k, it is quite easy to prove by induction that, for any n and m, 

(%))w=if;]wr(yr^. 
r=(A s 

Put m = p in this formula. Since p is prime, the binomial coefficients are all divisible by /?, except 
the two extreme ones (see [1], p. 417). Therefore, 

(T(u„)fp^x"u„+pk+y"un (mod/0-

Since by construction (T(un)YP^ is a sum of terms all supposedly divisible by p, this entails that 
^Pun+pk+yPun^°(modp). 

Since/? is prime, by Fermat's little theorem, xp = x (mod/?) and yp = y (mod/?), and the pre-
vious congruence becomes xun+pk +yun = 0 (mod/?). 

By hypothesis, for any n, xun+k +yun = 0 (mod/?), and from the difference with the previous 
congruences we obtain x(un+pk - un+k) = 0 (mod /?). Since, by hypothesis, /? and x are relatively 
prime, this implies un+pk -un+k = 0 (mod/?) for any n. This proves Theorem 1. 

Examples: 

(1) Theorem 1 contains known properties for particular second-order linear sequences. For 
instance, let us consider the following one, with a and b being arbitrary nonzero integers: 

An equivalent form of this recursion is un+2 +bun = aun+l. 
If we take arbitrary integral values for uQ and ux, all un are integers; therefore, if/? divides a, 

Theorem 1 may be applied with x = 1, y = b, and k = 2, which proves that the distribution of the 
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residues of (un) modulo/? is either constant or periodic with period 2(/?-l). This was shown in 
[4] by Lawrence Somer, for a particular case of (un). The reader is also referred to [5] and [6] 
for other results about the periods of residues modulo a prime on examples of second-order (un) 
more restricted than ours but with more detailed results. 

(2) The scope of Theorem 1 is not limited to second-order linear recursions (not even to 
linear ones). For instance, let us consider the third-order recursion 

Un+3+aUn+2+bun+l+CUn=° 

with nonzero integers as coefficients and initial values. If the prime/? divides both a and b, then, 
by Theorem 1, the distribution of the residues of (un) modulo/? is either constant or periodic with 
period 3(/?-1). For/? dividing both a and c, the corresponding period will be 2(/?-1); it will be 
/? - 1 for p dividing both b and c. 

(3) The T transformation allows a fresh look at the fundamental recursion (Rl) and helps to 
provide an easy demonstration on a periodicity modulo a prime p property of sequences of the 
type(2un+l-aun). 

If A = a2 -4b, we may replace A in (Rl) by (a2 -A) /4 and, after simple computation, we 
obtain Aun = 4un+2-4aun+l+a2un, where we recognize the right-hand side to be T^-al)(un), 
which is the result of the first iteration of the transformation 2(2,-a, i>- Therefore, by applying 
Theorem 1 to the sequence (2un+l-aun) = ( ^ . - ^ D O O ) * w ^ n k = l, x = 2, and y = -a, we see 
that if/? is any odd positive prime divisor of A, the discriminant of (Rl), supposed nonzero, the 
distribution of the residues of (2un+l-aun) modulo/? is either constant or periodic with period 
/ ? - l for any (un) satisfying (Rl) and made up of integers. (In that case, the condition that/? be 
odd is necessary to insure that/? and x = 2 are relatively prime.) The interesting fact here is that 
any member of the set of the sequences (2uh+l-aun) exhibits the same periodicity property with 
regard to any number in the set of odd prime divisors of A. 

As a more concrete example of application, let (U„) and (Vn) be, respectively, the 
generalized Fibonacci and Lucas sequences of (Rl). If un = Un, then, by a well-known formula, 
we get 2un+l - aun -Vn. This proves that the distribution of the residues of V„ modulo any odd 
prime divisor/? of A is either constant or periodic with period / ? -1 . 

(4) We may generalize this set to set relationship by studying the composition of two T 
transformations with different integral parameters. For any sequence (un), we have 

3(v, W.D(2(X^.I)K)) = ^+2+(xv+w*K+i+wyu„, 
which proves that the composition of these transformations is commutative. 

If (un) satisfies (Rl), this expression is equal to (vy + wx+avx)un+l+(wy-bvx)un, and by 
applying Theorem 1 we prove that if/? is any positive prime divisor of the gcd of vy + wx+avx 
and wy - bvx (if one exists), and is relatively prime with both x and v, then the sequences of the 
residues modulo/? of (pcun+l+yu„) and (vun+l +wun) are either constant or periodic with period 
p-1. 

Here we have two different sets of sequences that display the same behavior, in terms of 
periodicity, regarding a given set of prime numbers (the prime divisors of the gcd of vy + wx +avx 
and wy-bvx). 
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(5) The period provided by Theorem 1 is not necessarily the shortest one, as shown in [3]. 
The following example shows how this situation may occur. Let us suppose that we have a 
sequence (un) of integers satisfying the recursion (Rl), and two nonzero integers x and y such 
that xun+2 + yun is divisible by a prime number p for every n, p being prime with both x and a. 
The application of Theorem 1 to this situation yields 2(p-l) as the corresponding period. But 
xun+2 +yun = axun+l + (y-bx)un, which means that the right-hand side is also divisible by p for 
every n; this time, applying Theorem 1 to this situation yields p - 1 as the corresponding period. 
This proves, with the result of Example 1, that the primes/? for which there exist integers x mdy, 
x prime with/?, such that/? divides every xun+2 +yun, and the distribution of the residues of (un) 
mod/? has a corresponding shortest period of 2(/? -1), are necessarily divisors of a. 

Therefore, when a = ±l, for any prime/? such that there exist integers x and y such that 
xun+2 +yun = 0 (mod/?) for every n, x prime with/?, the corresponding shortest period is /?-1 or 
less. For instance, if (Ln) and (Fn) are, respectively, the classifal Lucas and Fibonacci sequences, 
the shortest period mod 5 for (Ln) is precisely p-l = 4, in accordance with the fact that 
Ln+2 + Ln is divisible by 5 for every n and a = 1. 

For (Fn), the shortest period mod 5 is 20, which means that, when 0 < k < 5, integers x andj, 
x prime with 5 and such that xFn+k +yFn is divisible by 5 for every n, do not exist because, in that 
case, k(p -1) = 4k < 20. 

For k = 5, we easily find that Fn+5+2Fn is divisible by 5 for every n, and the corresponding 
period is k(p -1) = 20. 
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