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PROBLEMS PROPOSED IN THIS ISSUE

H-532 Proposed by Paul S. Bruckman, Highwood, IL

Let V, =V,(x) denote the generalized Lucas polynomials defined as follows: V, =2; V] = x;
Via=xV,u+V,,n=0,1,2 ... Ifnis an odd positive integer and y is any real number, find all
(exact) solutions of the equation: V,(x)=y.

H-533 Proposed by Andrej Dujella, University of Zagreb, Croatia
Let Z(n) be the entry point for positive integers n. Prove that Z(n) <2n for any positive
integer n. Find all positive integers 7 such that Z(n) = 2n.

H-534 Proposed by Piero Filipponi, Rome, Italy

An interesting question posed to me by Evelyn Hart (Colgate University, Hamilton, NY) led
me to pose, in turn, the following two problems to the readers of The Fibonacci Quarterly.

Problem A: For k a fixed positive integer, let 7, be any integer representable as
k
m = Z ij;‘ s (1)
=
where v; equals either j or zero.

Remarks:
(i) Clearly, we have that 0<n, < f(k) = (k +1)F,,, — F,,, +2 (see Hoggatt's identity I,;).
(ii) In general, the representation (1) is not unique, as shown by the following example:
91=T7F, = 6F; +5F;+4F, +3F;.
(iii) Not all integers can be represented as (1), 4, 5, 10, 11, 16, 17, 22, 23, and 24 being the
smallest among such integers.

Let S(k) be the number of all n,. Is it possible to evaluate ]}1_1)130 %’,‘%?

Problem B: Is it possible to characterize the set of all positive integers k for which kF, is repre-
sentable as

k-1
kF, =3 v,
=1
where v ; is as in Problem A?
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Remarks:
i) Since kF, > X! jF. for k <6, we must have £ >7. In fact, 7F, = 91 can be represented in
k J J J 7

this form [see Remark (ii) in Problem A].
(i) The numerical inspection of earliest cases shows that other values of £ are 10, 11, 12, 13, 15,
and 16. As an example, we have: 16F,, = 15F s+ 14F, +11F, + 9F, + 6F; +5F; + 3F;.

H-535 Proposed by Piero Filipponi & Adina Di Porto, Rome, Italy
For given positive integers # and m, find a closed form expression for >}_; £™F; .

Conjecture by the proposers:

Zpn = 2, k"E, = P (MF, + PV (WF, +C,, (M

k=1

where p{™(n) and p{™(n) are polynomials in » of degree m,
p@m) =3 (D alnm, pP )= ()BT, 2
i=0 i=0

the coefficients a{™ and 5{™ (k = 0,1, ..., m) are positive integers, and C,, is an integer.
On the basis of the well-known identity

Ly, =(M=2)F,+(n-1DF,+2, €)
which is an alternate form of Hoggatt's identity 1,,, the above quantities can be found recursively
by means of the following algorithm:

L p™D(m) = (m+ 1) p™n)dn+(=1y™'af™D, p{™D(n) = (m+1)[ pi (n)dn+(-1y"15"D.
m+l
2. a(()m+1) - Z(ai(m+l) +bi(m+l))'
i=1
m+l
3 bém+l) - Z Cl,»(m+l).
i=1
4 Cpy=(1yaf™.
Example: The following results were obtained using the above algorithm:
2y, =@M —4n+8)F,, +(n* —2n+5)F, - 8;
23, = (@ —6n* +24n—50)F,,, + (n* - 3n* +15n - 31)F, + 50;
Ty = (" —8n +48n* —200n +416)F,,, + (n* — 4n’ + 300" — 124n +257)F, — 416;
s, = (n° —10n* +80m° — 5001 +2080n — 4322)F,,,,
+(n° = 5n* +50m° — 310n* +1285n— 26T1)F, +4322.
Remarks:
(i) These results can obviously be proved by induction on #.
(i) 1t can be noted that, using the same algorithm, X, can be obtained by the identity X, , =
Fn+1 + En -1

(iii) It appears that a{™® / b{™®) = const.= a{™ / b{™, (k=1,2,...) and lim a{™ /b = a.
m—»o0
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SOLUTIONS
Limits

H-514 Proposed by Juan Pla, Paris, France
(Vol. 34, no. 4, August 1996)

I) Let (L,) be the generalized Lucas sequence of the recursion U,.,-2aU,,,+U, =0 with
a real such that @ >1. Prove that
. LL,Ls... L, 1 1
lim =

n—>+c0 L2n+1 h 4 a‘/az -1 '

IT) Show that the above expression has a limit when (L,) is the classical Lucas sequence.

Solution by H.-J. Seiffert, Berlin, Germany
Let (L,) be the generalized Lucas sequence of the recursion U,,,, —2aU, ., +bU, =0 with a

n+l
and b real such that >0 and a> >b. Then L, has the Binet form L, = a"+ ", n € N,, where
a=a++a*-b and f=a-+a’-b. Let E =(a"-p"/(a-p), neN,. Since a>|f| by

a>0 and a* > b, we have

E, _ o - B 1 1=(Blay _ 1
A G P f) o= ,Bnl—gloo1+(ﬂ/a)" a-p
or

lim = ——— )

Fn+1
LyLp Ly, ... Ly, = ;: k keN, neN,
2%
Hence, by (1),
lim leIjZkak oo Loy - 1 Q)
n—>+o0 L2"+lk 2Fst/a2 —b

for all k e N. In the special case k = 1, this limit is 1/ (4ava®? —b). The more special case b =1
and (a > 1) solves the first part of the proposal. Taking a=1/2, b=~1, and k =1, (2) gives the
value 1/+/5 for the limit considered in the second part of the proposal.

Also solved by P. Bruckman, C. Georgiou, J. Kostdl, and the proposer.
_Some Entry
H-515 Proposed by Paul S. Bruckman, Highwood, IL
(Vol. 34, no. 4, August 1996)

For all primes p #2,5, let Z(p) denote the entry-point of p in the Fibonacci sequence. It is
known that Z(p)}(p—(%)). Let a(p)=(p-(3))/ Z(p), g=%(p—(3)). Prove that if p=1 or 9
(mod 20) then
= (-D¥* ) (mod p). ©)

q+l
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Solution by H.-J. Seiffert, Berlin, Germany

We will use the easily verifiable equations

B =B Ly +(D)" and By = F uL, - (1), M
where n is any integer, and the following known results:
(3)=1if p=1or 9 (mod 10), 2
p|F, ifand only if p=1 (mod 4), ?3)
Z(p)|m if and only if p|F,,, €))

where p #5 denotes an odd prime and m a positive integer.

Let p be an odd prime such that p=1 or 9 (mod 20). From (2), we have (3) =1, so that
g=3({@-D.

First, suppose that p|F,,. Then Z(p)|q/2 by (4), which yields a(p)=0 (mod 4). Using
the left equation of (1) with n=¢q/2, it follows that

Fpy= FyalLy i + (=17 = (172 (mod p),

which proves (*) in this case.
If p| F,,, then p|L,,, since p divides F, = F/,L, /5, by (3). Since Z(p)|q and Z(p)iq/2,
by (4), we have a(p) = 2 (mod 4). Using the right equation of (1) with n=¢q /2, we obtain

1
Fpy = Fygyp Ly = (D72 = ((1***? (mod p),

proving (*) in such case.

Also solved by the proposer.
Mod Squad

H-516 Proposed by Paul S. Bruckman, Highwood, IL
(Vol. 34, no. 4, August 1996)

Given p an odd prime, let k(p) denote the Lucas period (mod p), that is, k(p) is the smallest
positive integer m = m(p) such that L, = L, (mod p) for all integers n. Prove the following:

‘m+n

(a) Let u=u(p) denote the smallest positive integer such that @ = *=1 (mod p). Then u=
m=k(p).

(b) k(p) is even for all (odd) p.

(© p=1(mod k(p))iff p=5or p==1(mod 10).

(d p=-1+1k(p) (mod k(p))iff p=5 or p=13 (mod 10).

Solution by the proposer

We will use the following fairly well-known result that a” = o, 7 = (mod p) iff p=5 or
p =1 (mod 10), while a” =, f? =a (mod p) iff p=5 or p=+3 (mod 10). Also, we shall
use the easily demonstrable result that k(p)=4 iff p=5. The first result implies that  always
exists.
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Proof of (): If p=5,then @ = f=2""=-2 (mod 5); we see readily that u=m = k(5)=4.

If p#5, suppose the congruence in the statement of the problem. Then, for all integers 7,
we have """ =", f*"" = " (mod p), which implies (by addition) L, = L, (mod p). This, in
turn, implies that m|u. On the other hand, L, = L, (mod p) for all integers n, and in particular
for n=-1,0, and 1; hence, L, =1L ,=-1, L, =L,=2, L =L =1 (mod p). Then L, +
L1 =5F,=5"*(a™~ ™ =0 (mod p), so a™ =" (mod p). Since L, =a” + " =2 (mod p),
we have @™ = f” =1 (mod p). From this, it follows that |m. Hence, u=m. Q.E.D.

Proof of (b): Since o™ = " =1 (mod p), we have that (a¢f)” =(-1)" =1 (mod p), which
implies that m = k(p) must be even.

Proof of (c): Since k(p)=4 iff p=5, we see that the first congruence in the statement of
(c) is satisfied by p=5. Suppose p#5 and p=1 (mod k(p)). Then af =, B? = 3 (mod p),
which implies p = +1 (mod 10).

Conversely, if p=+1 (mod 10), then a” = o, 7 = f (mod p). so a” ' = 71 =1 (mod p).
Then k(p)|(p—1) or p=1 (mod k(p)).

Proof of (d): We see that the first congruence in the statement of (d) is satisfied by p=5.
Suppose that it is satisfied by p#5. Then k(p)|2p+2), k(p)|(p+1), so aP=prH =1
(mod p); for if @”"! = -FP* = +1 (mod p), then (af)”*' = -1, which is absurd, since (~1)"*' =1
(for odd p). Then a” = B, f? = a (mod p), which implies p = +3 (mod 10).

Conversely, if p=+3 (mod 10), then a” =8, f?=a (mod p), which implies a?* =
PPl =1, a®*2=p?"*2 =1 (mod p). Therefore, k(p)|(2p+2), k(p)|(p+1), which implies

=-1+1k(p) (mod k(p)).
Also solved by L. A. G. Dresel.

Divide and Conquer

H-517 Proposed by Paul S. Bruckman, Highwood, IL
(Vol. 34, no. 5, November 1996)

Given a positive integer 7, define the sums P(n) and Q(n) as follows:

Po) =Y u(5)Le 00)=T (%)L, 0

din dln
where 1 and @ are the Mébius and Euler functions, respectively. Show that n| P(n) and n|Q(n).
Solution by H.-J. Seiffert, Berlin, Germany
It is well known that

L

o = Lkp,_1 (mod p")ifpisaprimeand k, 7 €N . )

Let n € N be divisible by the prime p. Then there exist n, e € N such that p [m and n = mp°.
Using u(d)=0 if d €N and p?|d, u(jp)=-u(j) if jeN and pfj, and (1), modulo p°
we obtain
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P() = Ponp®)= 3 u(d)L, . Zy(d)L%,,, +Zu(jp)L%pe_1

d|mp®
=) ,u(d)L,,, - |Z ,u(])L,,, 1 =0 (mod p%).
dim J\m

Clearly, this proves the desired relation P(n) = 0 (mod »).
Modulo p® we have

Q) =Q(mp*) = 3. V()L ZCD(d) o+ Y VD)L,

d|mp*® d}l)rrg
= z(D(d)L,,, - +Z ZCD(]p“‘)L,,, ., (mod p°),

d|m s=1 jlm

where we have used (1). Since ®(jp*) = (p* - p*™)®()) if j,s € N and p/ j, we obtain
PIDILCVREEDNI L ) I V)L

= i 5 i
=§p‘§n¢o‘) " gpj%(l)(])L
—gp %(D(/)L j_i:p%@(])L
—‘gp %%)L ZOP%(D(])L
‘—le;n‘l)(J)Lm 1 (mod p°),

where we have used (1) again. It follows that O(n) =0 (mod p°). Of course, this proves the
desired result O(n) = 0 (mod n).

Also solved by P. Haukkanen and the proposer.

o % o
EXE XX 14
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