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In this paper we consider the Z-module of integer-valued functions / defined on the non-
negative integers (respectively, on all integers) and characterize the submodule determined by the 
divisibility relation of the title and also, as a corollary, by the divisibility relation m+n\f(m)+f(n). 
Our results suggest some rather basic questions about such modules (equivalently, about infinite 
matrices of integers in which each column has only finitely many nonzero entries). We discuss 
these questions and pose a conjecture. 

The functions/from the nonnegative integers N to the integers Z satisfying 
m-n\f(m)-f(n) for all m, n edom/ (1) 

are mentioned in Apostol's textbook [1], Waterhouse [2] observes that integer-coefficient poly-
nomials /certainly satisfy (1) and asks for a nonpolynomial function from Z to Z that does so. 
Myerson [3] supplies one. Problem 4 on the 1995 U.S.A. Mathematical Olympiad asks one to 
show that nonpolynomial functions from N to Z satisfying (1) never exhibit polynomial growth 
(see [4]). For sharper results on their growth rates, including an open question, see [6]. 

Our main result is that in both cases, N to Z and Z to Z, there is a simple characterization of 
all functions satisfying (1); in fact, in each case, these functions form a Z-module for which we 
can give a basis. (In the present context, the term basis, defined below, has the usual connotations 
of linearly spanning and being linearly independent, but infinite linear combinations are allowed.) 

Let MN (resp. M z ) denote the Z-module of functions N to Z (resp. Z to Z). Let M be any 
submodule of MN or M z and let us define a basis for Mas a finite or countably infinite set {fQ, 
fv fi'-'} m^^or which each / G M has a unique expression (up to order of summands) as an 
integral linear combination / = Z^>0 ckfk. Naturally, (Z^=0 ckfk)(ri) means£^=0 ckfk(n) and, to 
converge, the series must have only finitely many nonzero terms for any specific value of n (and 
hence, of course, order of summation does not matter). Equivalently, we may identify / G M N 
with the infinite sequence (row vector) (f(j))j>o, identify MN with the set of all infinite se-
quences of integers, and view {/.} as an infinite matrix F with row i the sequence for f.. Then 
Hk>0ckfk is the vector-matrix product cF, and F must be column-finite (i.e., only finitely many 
nonzero entries in each column) to ensure cF is defined for arbitrary c. The conditions for {f.} 
to be a basis translate into: the rows of F (i) span MN and (ii) are linearly independent (both con-
ditions over Z and in the sense of infinite linear combinations). For example, the identity matrix 
corresponds to the "natural" basis {ej}j^0 for MN with ^ ( j ) - ^ . (Kronecker delta). Pascal's 
matrix, given by P = ({j ))/j;>0 corresponds to the basis CN: = {ft }i>Q with fi (j) = (/). The ft form 
a basis because, in fact, / = Z^o ctft if and only if c;. •= HJ

M(-l)J~'(Ji)f(i), j ^ 0. 
We digress to give one reason why CN is a good basis to work with. Note that fk(x) -(f) is 

a polynomial in x of degree k with rational coefficients; thus, any finite integral linear combination 
of the fk is a polynomial in the polynomial ring Q[x] that assumes integral values at the integers. 
Conversely, suppose f(x) eQ[x] has this property. Let degf = m. Now {1, x,..., xm} is a basis 
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for the Q-vector space Pm = {g(x) e Q[x]: degg < HI}, and since deg/^ = k, the set {/̂ }0<^<w is 
also a basis for POT. Hence, / = Z^=0 ̂ / ^ with C ^ G Q . In fact, c^eZby the integrality property 
off and the last sentence of the preceding paragraph. It follows that the polynomial functions in 
MN are precisely the finite integral linear combinations of the ft. (It also follows that if / e Q[x] 
assumes integral values at the nonnegative integers, then/assumes integral values at all integers 
and, hence, the polynomial functions in Mz are the same as the polynomial functions in MN.) 

An analogous basis for Mz is Cz: = {gk}k>0 u {hk}k^ where 

»«-("£*) - va-C^*--,1} 
In this case, / e M z can be (uniquely) expressed as 

CO CO 

with 

and 
n-l 

c„= E(-lW 2_\W)for»>0 

4. = §(-ir*-1L2!,
ft"_1

1)/w for»>i. 
k=-n V ' 

By arranging Cz in the order g0, /^, g1? Z ,̂ g-2,..., and evaluating at the integers in the order 0, - 1 , 
1, - 2 , 2, ..., verification becomes equivalent to showing that the upper triangular matrices 

?,2J+(7W/21L - ( < - < ^ W « T L 
are inverses of one another. This does not particularly facilitate a proof by hand (and we leave the 
combinatorial identities on which a formal proof rests to the interested reader), but spending a few 
minutes checking finite sections by computer will convince you that these two matrices are indeed 
inverse to one another. 

Note that hk is an odd function, that is, hk(-n) - -hk(n), n e Z, and, for k > lr 2gk -hk is an 
even function, as is g0. Also, from the above formulas for cn and dn, if / GMZ is odd, it follows 
that ck = 0 for k > 0; thus, the hk span the odd functions in Mz. Similarly, if / e M z is even, it 
follows that ck = -2dk for k > 1, yielding a spanning set for the even functions. 

Summarizing, we have the following theorem. 

Theorem 1: Let 

/.»=(?) ftM-("i*)*->-("i*_v 
as above. Then: 

(i) CN = {fk}k>0 is a basis for MN; 
(U) Cz = {gk}k>0 u {hk}k^ is a basis for Mz; 

(w'0 Codd = {hk}k>x is a basis for {/ G M Z : / is odd}, 
Qven = {&} ^ (2& "A)**! i s a b a s i s for if GMZ •/ IS even}. 
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Just as for CN, the finite integral linear combinations in Cz, Codd, Ceven comprise the polyno-
mial functions in the respective modules. The latter facts—at least for CN, Codd, Ceven—are noted 
in Polya and Szego [5]. 

For the sake of clarity, we mostly use the function interpretation for MN andMz in the first 
part of the paper—Theorems 1 through 4—and then work with sequences and matrices in the 
second part. We are now ready to state our main result. Let lcm[w] denote the least common 
multiple of the first n positive integers (and set lcm[0] = 1). 

Theorem 2: Let M^ (resp. Mz) denote the submodule of functions/in MN (resp. M z ) that sat-
isfy (1): m - n\f(m) - f(n) for all m,ne domf. Then: 
(i) M£ has a basis Q = {lcm[k]fk}k>0; 

(ii) M£ has a basis Q = {lcm[2£]^>0 u {lcm[2£ - l]hk}k>v 

Proof: First we develop two lemmas. Let [a, b] denote the interval of integers a, a+1, ..., b. 
For prime/? and positive integer n, let vp(ri) denote the exponent of the largest power ofp that 
divides n; thus, pMn) \n9 but pvp(n)+lj[n. It is trivial that 

+ 
a + h 

for positive integers a, b, c. Hence, for n > k > 1 and r > 1, 

< n 
Pr 

- n-k 
Pr 

This says that, for each r, the number of integers in [1, k] divisible by pr is < the number in 
[w-& + !,/?] so divisible. This fact allows the construction in an obvious way of a bijection 
<f>: [1, k] -> [n - k +1, n] such that vp(i) < vp(<f>(i)) for 1 < i < k. (Consider first the integers in 
[1, k] divisible by the highest power ofp that divides k. Let <j> be any one-to-one map from these 
integers to the integers in [n- k +1, n] divisible by this power ofp and then proceed in turn to the 
smaller powers ofp.) Let n- denote the falling factorial n(n - l)(n -2)--tok factors. 

Lemma 1: 
(i) For n > k > 1 and/? prime, pVp(Icl) \nk. 

(ii) If / (1 < / < k) factors are removed from the product w-, then the resulting product is divisible 
b y pVpCttHvpCfcnOT). 

Proof: 
(i) Since [n

k)= ^ is an integer, /A(*!) \n-. 

(ii) This assertion follows from part (i) and the existence of the bijection <j> which says, so far 
as divisibility by p goes, the effect of tossing the factor (/>{i) out of the product n- is no worse 
than the effect of tossing the factor / out of &!, and vp(i) < vp(lcm[A:]). 

We also need a result on the divisibility of binomial coefficients. 

Lemma 2: If/? is a prime that does not divide r, and if i > j > 0, then /?' J p'q 
PJr 
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Proof: An often-quoted result of Kummer (see [7] for a proof) says that the exact power of 
p that divides a binomial coefficient (jj) is the number of "borrows" when k is subtracted from n in 
base/?. For example, in base 5, (375)5 = 3000, (330)5 = 2310, and we have the subtraction 

« = 3 0 0 0 
* = 2X \ 1 0 

n-k = 14 0 

with 2 borrows. Note that if (as here) the number of trailing zeros in n exceeds that in k, the 
number of borrows will always be at least the excess (here, 2). Since k - pjr has exactly j trail-
ing zeros, this observation translates immediately into Lemma 2. 

Now to the proof of the theorem. First, we must show that the elements of Cft actually sat-
isfy (1). Therefore, let f^(n) = lcm[k](l) denote a typical element of Cft and we must show that 
m\fk(n + m)~fk(n)> f°r w,n,k ^ 1 ; that is, m\lcm[k]((n+m)--n-)/k\ or, equivalently, for each 
prime divisor/? of m, 

pVp{m)+vp{k^-vp{\cm[k})Un + myc_ _f£_ ^ ) 

lfvp(m) < vp(lcm[k]), (2) is an immediate consequence of Lemma l(i). So suppose vp(m) > 
vp(lcm[A:]) and consider the cases k > n and k<n separately. If k > n, then m is one of the fac-
tors in {n+m)~ and n- = 0. But pvp^\m by definition, and 

pvp(kl)-vp(lom[k]) (n + m)-
m 

by Lemma l(ii), and (2) is obtained by multiplying these divisibility relations. On the other hand, 
If k < n, consider the powers of m In the expansion 

k 

7 = 1 

where, in the inner sum, the summand n(k-i) runs over all products of k-i factors from 
[n-k + \ri\. We have pvp^-ivp^lcm^\K{k-i) by Lemma l(ii) and, trivially, pv*W\ni. This 
yields 

Vpik^+iivpimyvpilcmlk]))^/^ _ j W 

and hence, certainly, 
vp{k\)+vp{m)-vp{\om[k})\nni_j\mi 

since / > 1, and, by supposition, vp(m)>vp(lcm[k}). Summing over i, we obtain (2). Hence, 
Q C: MN? and the proof that Q c M!

z Is very similar. 
Next, we must show that every / e M^ is an integral linear combination of the elements of 

Q . We already know there exists a unique sequence of integers (c„)„>0?
 namely> 

k=0 
such that 

fc=o V / 
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So we must show that lcm[&]|c£ under the hypothesis that/satisfies (1). To get induction (on n) 
working, we will prove a little more: 

For all a GN, lcm[n] divides c„(a) := J ( - l ) w "*( t l / ( t f + *) when/satisfies (1). 
k=o V / 

[Of course, cw(0) = cn and, to numerical analysts, cn(a) is the rfi forward difference o f / at a.] 
The base case n' = 1 is trivial. Since cw(a) = ̂ ( a +1) - c„_i(tf) w e have, by the induction hypothe-
sis, that l c m [ w - l ] | c „ ( a ) and need only show n\c„(a). L e t / ? be any prime divisor of n. Write 
n = plr and let k = pjs with r and s relatively prime to p. Now (1) implies pj \f(a + k)- f(a). 
Also, if i > j , then pj~J\{n

k) by Lemma 2. In any case, pj\{n
k)[f(a + k)~ f(a)\. Since 

k=o V J 

it follows that p1 \cn(a), and since/? is arbitrary, n\cn(a) and the induction is complete. The cor-
responding p roof that C z generates M £ is analogous: cn{a) and ^ „ ( a ) a r e defined analogously 
(except now a e Z ) and the induction is based on the recurrence relations cn(a) = dn(a +1) -dn{a) 
and d„(a) - c^^a) - cn_x(a -1). This completes the proof of Theorem 2. 

Here is one corollary. As noted earlier, the finite linear combinations in CN (or Cz) yield 
polynomials, and infinite linear combinations yield nonpolynomials (by uniqueness—the polyno-
mials are already exhausted by the finite linear combinations). The observation (made in the 
editorial comment on [3]) that there are uncountably many nonpolynomial functions Z to Z satis-
fying (1) follows immediately. 

For later use, we remark that the divisibility relation (2) above in fact holds for arbitrary inte-
ger n. (This shows that fk(n) - lcm[£](2), if considered as a function of n e Z rather than just 
n G N , is in M z ; thus, each element of the basis Cft for M& extends to an element of M%. We 
will soon see that not every element of M^ extends in this fashion.) The proof of (2) for n < 0 is 
similar to that given above for n> 1; n = 0 is easy, so suppose n<0. In the case n + m<0, the 
result already established in (2) for n > 1 applies (with the roles of n+m and n reversed); the case 
n+m>0 should be split into subcases k>n+fn and k<n+m corresponding to the subcases 
k > n and k < n above. The details are left to the interested reader. 

Now we consider an interesting submodule of Mft. Let 0: M z —> MN be given by restriction 
of domain, that is, 0(f) = f\N. (Interpreting the elements of MN and M z as sequences, 6 just 
throws away the left half of a doubly infinite sequence.) Let y/ denote the restriction of 0 to Mz; 
then it is clear that y/: M z -> M^. Note that the range of y/ includes at least all the finite integral 
linear combinations of Cft, that is, all the polynomial maps in M&. This is because each f£ e Cft 
extends, as remarked in the previous paragraph, to an element in Mz. Of course, the map 0 is 
onto but far from one-to-one. Contrariwise, we have the following result for y/. 

Theorem 3: Let y/: M z -> M^ be the map just defined. Then 
(i) y/ is one-to-one, 

(ii) y/ is not onto. 
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Proof: 
(i) It suffices to show ker y/ = (0) and, to see this, view an element of ker y/ as a doubly 

infinite sequence of integers with a tail of zeros. Then it cannot have any nonzero term [the 
standing divisibility hypothesis (1) implies any term is divisible by all sufficiently large integers]. 

(ii) Recall fk(n) = (n
k) and, for brevity, set uk = lcm[*], k > 0. Now consider the element of 

MR given by / = Zjt>o%A and let us ask iff can be extended backward, i.e., defined at - 1 , to 
yield a (sequence of integers) g that is still in MR. It suffices to show that this cannot be done. 
Suppose it can. Then, by Theorem 2(i), g = Hk>ockukfk f°r s o m e sequence of integers (ck) and 
g(n +1) = f(ri), n>0. This readily implies that uk = ckuk + ck+luk+l, k>0. Multiply by (-1)* and 
add to obtain 

n-l 

Y(-l)kuk=c0u0 + (-l)n-lc„u„ 

and, in particular, 
f,(-lfuk^c0 (modu„Xn>l. (3) 
k=0 

This infinite set of congruences has no solution for c0 as follows. Let sn = Z£=o(~1)^ denote 
the left side of (3). Since un - un_x unless n is a prime power, pr, in which case un - pun_l9 it is 
easy to show by induction that 0<sn<un for n even > 2, and -un < sn < 0 for n odd > 3. Thus, if 
c0 > 0 we have, for all sufficiently large even w, 0 < c0 < un while 0 < sn < un and, by (3), sn = cQ 

(mod i/„); hence, sn = c0. It follows that sn+2 - sn and therefore un+2 = ww+1, a contradiction since 
un+2 = 2un+l whenever w + 2 is a power of 2. A similar contradiction is obtained in case c0 <0, 
completing the proof. 

As a curiosity, we can now "analyze" the divisibility relation m+n\f(m)+f(n) with little 
extra effort. Let MR = {/ G M N :m+n\f(m) + f(n), m,n GN} and analogously for M%. Also, 
let p: M'i —> MR denote the restriction map analogous to y/: M% —> MR above. 

Theorem 4: Let 
i , x (n + k-l\ 
hM = [2k-i) 

as in Theorem 1, and let hk\N denote the restriction of hk to N. Then: 
(i) {lcm[2& - l]\|N}^>i is a basis for MR; 

(ii) {lcm[2fc - l]^}fc>i is a basis for A/g. 
(Hi) p: Mz -> MR is both one-to-one and onto (unlike the map y/ of Theorem 3). 

Proof: Suppose / eMg. The divisibility hypothesis with m = —n implies that/ is odd and, 
consequently, the divisibility hypothesis also implies that m-n\f(m)- / («) , m,nsZ. Therefore, 
Mfi- M £ n { / G M Z : / is odd} and part (ii) follows from Theorem l(iii) and Theorem 2(ii). 
Now observe that m + n\f(m)+f(n), w ,«eN implies also m-n\f(m)-f(n), m,nGf$ or, 
equivalently, k\f(£ + k)-f(£),k9JteWl. To see this, write l = kq+r with 0 < r < k (division al-
gorithm) and apply the hypothesis with m = kq + r and n = k-r to obtain k\f(kq + r) + f(k -r). 
Replacing q by q + l yields k\f(kq + r + k) + f(k-r). Hence, k divides the difference, that is, 
k\f(£ + k)-f(l), as desired. 
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This permits us to extend any / GMJJ to / GM% by defining f(-n)=-f(n), n>\ (the 
reader should check this), and this is the only way to extend/since M£ consists of odd functions. 
Thus, the restriction map p: M'i -» M# is one-to-one and onto. This is part (iii) and part (i) 
follows from parts (ii) and (iii). 

The preceding results raise the question: To what extent is the above notion of basis analo-
gous to a free basis (of a finitely generated module)? To begin with, any finitely generated sub-
module of MN is a free Z-module and here the notions basis as above and free basis coincide. 
Every submoduleMof MN does possess a basis. To see this, view elements of MN as sequences, 
and for i > 0 let ct denote the least positive integer occurring in position i among elements of M 
having zeros in the positions preceding i (but if all these elements have 0 in position i, take ci = 0). 
If ct ̂  0, let u, be any such sequence (with first nonzero entry ci in position i). Then it is straight-
forward to verify that these u, form a basis forM. 

Now we switch perspective from functions and lists of functions to sequences and matrices, 
and henceforth write Z00 instead of MN for the infinite sequences of integers (and Q00 for the 
infinite sequences of rationals). Also Zoo (resp. Qoo) will be used to denote the set of infinite 
matrices of integers (resp. rationals). The terms span and linear independence will continue to be 
used in the sense of infinite linear combinations. For A eZoo, let R(A) denote the set of rows of 
A. One basic question is: When does R(A) form a basis for Z00? First, as noted above, A must 
be column-finite. Second, for R(A) to span Z°°, it is certainly necessary for R(A) to span the 
basic vectors {ek}; equivalently, A must possess a left inverse in Zoo, call it B. Third, A must have 
a trivial left nullspace in Z00 (so A'$ rows are linearly independent) and this makes 4̂!s left inverse 
B unique. These three conditions, though, do not ensure that R(A) spans all of MN. 

Example 1: Let J denote the infinite Jordan matrix—all 0's except l's just below the main diag-
onal—and set A = I + 2J. Then A is column-finite and has a unique left inverse in Zoo, but A's 
rows do not have Z-span Z00. 

Proof: The column-finiteness of A is obvious. It is easy to check that Jk has l's on the k^ 
diagonal below and parallel to the main diagonal and 0's elsewhere, and that a left inverse of A in 
Zoo is given correctly by the formal expansion (1 + 2J)"1 = I-2J + 4J2 -8J3 + • • •. The left null-
space of 4̂ in Q00 is spanned by (l,-y,-J-, —-g,•••) and so, clearly, has trivial intersection with 
Z00, making 4̂'s left inverse in Z^ unique. On the other hand, let e denote the (row) vector of all 
l's. Then eA = 3c, so the general solution of xA = e in Q00 is x = -je + £(l, - y , • £ , - £ , •••) (arbi-
trary k G Q) and, clearly, x g Z00 for any k. Thus, e is not in the Z-row span of A. 

Column-finiteness of 4̂fs left inverse (or, rather, the lack of it) plays a role in the preceding 
example. Note that a product of column-finite matrices is again column-finite, and associativity 
holds; in fact, for W G Q 0 0 and X, Y eQoo, if wX is defined and Y is column-finite, then it is easy 
to check that all four products are defined and (wX)Y = w(XY). Three corollaries: (1) if X and Y 
are column-finite matrices in Qoo, then (WX)Y = W(XY) for arbitrary WeQoo; (2) the column-
finite (CF) matrices in Qoo form a ring (with identity). Let us denote this ring by CF(Qoo) and, 
analogously, for CF(Zoo); (3) if A eCF(Zoo) has a unique left inverse B in Zoo that happens to be 
column-finite, then we have, for arbitrary w eZ00, w = w(BA) = (wB)A; thus, R(A) does indeed 
have Z-span Z00. Of course, this argument breaks down if B is not column-finite because then 
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wB might not be defined (and Example 1 shows that the conclusion need not hold). For A e 
CF(Zoo), the assertion that A has a unique left inverse in Zoo that happens to lie in CF(Zoo) is, on 
the face of it, stronger than saying that A has a unique left inverse in CF(Zoo). In fact, the two 
statements are equivalent since, if A has a left inverse B in CF(Zoo) and another left inverse C in 
Zoo\CF(Zoo), then B-C has a nonzero row, and adding this row to any row of B produces 
another left inverse for A in CF(Zoo). Furthermore, from elementary ring theory, for a in any ring 
with identity R, "a has a unique left inverse in i?" is equivalent to "a is invertible (i.e., a unit) in R" 

These observations suggest the following conjecture. 

Conjecture: Let A be a column-finite infinite matrix of integers, that is, A e CF(Zoo). Then the 
rows of A form a basis for Z00 if and only if A is a unit in CF(Zoo). 

[We have proved the "if" part and for the "only if" part we have shown that A has a unique 
left inverse B in Zoo. The conjecture then is that B must lie in CF(Zoo).] 

Motivated by the preceding observations, let us now consider the subtleties of the concept of 
inverse for an infinite > matrix. In general, we must distinguish between left and right inverses— 
indeed over the integers, all nine combinations of 0,1 or infinitely many left inverses and 0,1 or 
infinitely many right Inverses are possible. The following table provides simple examples (J 
denotes the Jordan matrix with lfs below the diagonal, K is given below, and the superscript t 
denotes transpose). 

# right inverses 

# 

left 

inverses 

0 

• 1 

00 

0 
0 

K 

J 

1 
K' 

I 

I + J 

00 

~ 

I + J' 

J + J' 

Here the unique left inverse ofK and K itself are given, respectively, by 

' 0 1 0 0 0 
0 - 1 1 0 0 
0 - 1 0 1 0 
0 - 1 0 0 1 
0 - 1 0 0 0 

' 1 1 1 1 1 
1 0 0 0 0 
1 1 0 0 0 
1 0 1 0 0 
1 0 0 1 0 

For J + J*, a right inverse is J-J3 + J5 (note that JtJ = l), and a right nullvector is 
(1,0, -1 ,0 ,1 ,0 , - 1 , . . . y. These and the other easy verifications are left to the reader. 

We now collect a few simple facts about inverses of column-finite matrices. 

Proposition 1: If A GCF(ZOO) has a unique left inverse B in Z«, and if AB is defined, then 
AB = I. 

Proof: By associativity, (AB -1)A = A(BA) - A = 0. Hence, AB -1 = 0 by uniqueness of 
A's left inverse. 

A diagonal matrix DGQOO with nonzero diagonal entries obviously has an unambiguous 
Inverse D~l eQoo, but already with triangular matrices we must be careful. 
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Proposition 2: Suppose U GCF(QOO) is block upper triangular with finite square blocks {[/„} on 
the main diagonal. 

If the Ujj are invertible, then [/has a unique left inverse Fin Qoo and J7 is block upper trian-
gular. Moreover, Fis a right inverse for [/and it is the only column-finite right inverse for [/in 
Qoo, though U may have other right inverses in Qoo and even in Z». 

Also, if U has integer entries and the Uu are invertible over Z, then V is actually in -Zoo. 

Proof: We can solve VU = / uniquely for the blocks of Fin turn: first row, left to right, then 
second row, left to right, etc., and Fhas the stated form. In particular, Fis column-finite; so UV 
is defined and, by Proposition 1, UV = I. 

Similarly, if W is assumed column-finite, we can solve UW = I uniquely for the (block) 
columns of W left to right, bottom to top. Hence, W must equal V. (Alternatively, invoke the 
result for rings: if vu-l and uw=l, then w = v.) However, for the upper triangular matrix 
U = I + f with J the "Jordan" matrix above, J7(l, -1,1, -1,1,...)' = 0 showing that U has multi-
ple right inverses. 

With [/and Fas in Proposition 2, uniqueness of [/'s right inverse may be guaranteed by C/'s 
zero pattern. 

Proposition 3: With [/and Fas in Proposition 2, suppose [/satisfies the following condition: 

[/x is defined (i.e., involves no finite sums) only when x is column-finite (4) 
[e.g., (4) certainly holds if [/!s above-diagonal entries are all nonzero]. Then Fis the unique right 
inverse for [/in Qoo. 

Proof: Suppose [/x = 0. By (4) there exists n such that xt = 0 for i>n. Take a large 
enough square upper left submatrix Um consisting of whole blocks of U so its size is m by m with 
m>n. Then Um(xh x2,..., xm)' - 0 and, since Um is a finite invertible matrix, x = 0 and U has 
trivial right nullspace, making any right inverse for [/unique. 

Proposition 4: With [/and F again as in Proposition 2, condition (4) of Proposition 3 is satisfied 
if and only if there exists k>\ such that the submatrix of U consisting of its first k rows has only 
finitely many zero columns. 

Proof: Exercise. 

Corollary: Pascal's matrix of binomial coefficients, P = ((j))^ y>0, has a unique left inverse and a 
unique right inverse, and both are given by P~l = ((-l)y"'(f)). 

Proof: One verifies that Q = ((-l)y_/(j)) is a left inverse for P, unique by Proposition 2, hence 
P g = / by Proposition 1, and Q is P's unique right inverse by Proposition 3. 

Referring back to Example 1, note the matrix A given there has multiple left inverses in Qoo. 
This raises the question: Does the phenomenon of Example 1 occur in Q^? Perhaps things are 
nicer over fields and for a matrix A GCF(QOO) with a unique left inverse B in Qoo, perhaps B must 
lieinCF(Qoo). 

Here are several other questions. Is there an effective method to determine which elements 
of Mi are in the range of y/1 When can a subset of MN (= Z00) be enlarged to a basis? Could 
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the matrix K of Example 2 be replaced by a column-finite matrix, that is, in view of Proposition 1, 
could a matrix A eCF(Zoo) have a unique left inverse B in Z^ for which AB is not defined? In 
the rings CF(Zoo) and CF(Qoo), is there a nice characterization (or generating set) for the units? 
An answer to the latter question for matrices A that are both row- and column-finite and with 
entries in n field was recently given in [7]: A is invertible if and only if both its rows and its 
columns are (infinitely) linearly independent. 
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