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1. INTRODUCTION AND PRELIMINARIES 

In this note we use some properties of the Lucas sequences, 

Un(m,Q) = ^-Z^- and V„(m,Q) = <*" + P", (1.1) 
a- p 

where a > /?, m-a + /?, and Q = a/3, to extend two theorems due to Melham and Shannon [3]. 
For the sequences defined above, it is known that 

Un[Vh(^QlQh] = Unh(mM)'Uh(m,Q) (h*0) (1.2) 
and 

Vn[Vh{m,Q),Qh] = Vnh{m,Q)- (1-3) 
In this note we are concerned with sequences where Q = ±\. In this case, for proofs of (1.2) 

and (1.3) in the literature see, for example, [1, p. 632]. In [3], Melham and Shannon proved that 

^ 1 1 (**0) (1.4) % Ukj{m, l)t/fc0+1)(m, 1) akU2
k(m, 1) 

and - 1 _ 1 
J 0 V^m, l)VkU+l)(m, 1) = 2{a-P)Uk{m, 1)' ( L 5 ) 

They evaluated analogous sums involving Un(m, -1) and V„(m, -1) only in the special case in 
which m = 1 (Fibonacci and Lucas numbers, see (3.9) and (3.10) of [3]). The aim of this note is 
to extend (1.4) and (1.5) to even-subscripted numbers U„(m, -1) and V„(m, -1), with m arbitrary, 
so that (3.9) and (3.10) of [3] will emerge as special cases of our results. 

2. OUR RESULTS 

J 1 
U U2kj(m, - l)U2ku+1)(m, -1) a2kUlk(m, -1) Theorem 1: £ TT f_ 1N„ 7 3 — ^ = 2 t „ 2 ,,., " ^ * 0 ) - ( 2 1 ) 

Theorem 2: Y = . (2.2) 

Proof of Theorem 1; If we let Ukt[V2(m, -1), 1] = Ukt(M, 1) with M = y +S, yS=l, y>S, 
then (1.2) may be written as 

t/2fe(m,-l) = t/2(m,-l)-t/t t(»r,l), 
and it follows (for t = \J andy + 1) that 
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fa U2k}.(tn, - l)U2k{J+l)(m, -1) - U2(jn,-l) pt Ukj(mA)Uk{m{mA) 

which, by (1.4) and (1.2),. 
1 1 = 1 

U2
2{fn^l) ykUl{m,l) ykU2

2k(m^\y 

Now, since y+S = M = V2{m, -1) = a2 +^2 , with afi = -l, we have 

r+L=a2+ \ 
r a2 

whence y = a2. This completes the proof. 

By using (1.3), the proof of Theorem 2 can be carried out in a similar way, so it is left as an 
exercise for the interested reader. 

We shall conclude this note by working out some reciprocal sums emerging from particular 
choices of m in (2.1) and (2.2). If we let m = 1, we obtain (3.9) and (3.10) of [3], respectively. If 
we let m = 2, we obtain, respectively, 

£ I = I (2J) 

and 

j=o QikjQiku+i) 4^2 P2k 

where Pk (resp. Qk) denotes the 1 t h Pell (resp. Pell-Lucas [2]) number. 
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