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1. INTRODUCTION 

One of the most effective ways of proving an integer N is prime is to show first that N is a 
probable prime, i.e., that aN~l = 1 (mod N) for some base a and l<a<N-l, and then to find 
enough prime factors of N±l so that certain other conditions are satisfied (see [1] for details of 
such primality tests). The problem of finding these prime factors is, of course, the difficult and 
time-consuming part of this process, and anything that assists in the factoring of N±l is of great 
value, particularly when N is large. 

In the case of the Fibonacci and Lucas numbers Fn and Ln, we are quite fortunate that identi-
ties exist whose form is exactly suited to this purpose. (These were discovered by Jarden [4, 
pp. 94-95]. Their use in primality testing was first made by the author in the early 1960's—see [4, 
p. 36].) The identities are all quite simple, asserting that Fn±\ and Ln±\ are equal to a product 
of certain Fibonacci and Lucas numbers with subscripts smaller than w, which numbers in turn 
may well have many known prime factors. Examples of these identities are: 

F4k+i - 1 = Fkh^ik+i a n d ^ 4 * + i + 1 = Fik+\hk • 
With the assistance of this set of identities, many large i^'s and Ln

%s have been identified as primes 
[2, p. 255]. 

In this note we give a collection of similar, but more complicated identities that can be used 
to establish the primality of'the primitive part F£ of Fk, i.e., the cofactor remaining after the alge-
braic factors of Fk have been divided out. This cofactor is given by the formula (see [2, p. 252]) 

F* = JjFfk/d\ ju the Mobius function. (1) 
d\k 

The subscript of F^ in the identities in the present collection has at most two distinct prime 
divisors, since an identity with three or more prime factors does not in general have a simple 
multiplicative structure on its right side, i.e., the right side is not just a ratio of products of Fk'§ 
and Z^s. The case of two prime divisors is transitional in that some identities have simple multi-
plicative structure and others do not [see (17) and (18)]. 

2, THE IDENTITIES 

In the proofs that follow, we use elementary Fibonacci and Lucas identities. Also, through-
out this note we use the familiar identity F2r - FrLr without further mention. In the first two 
theorems, the subscript of F£ is a power of a single prime. 

Theorem 1: For n > 3, 
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and 
K n-2 

Fr+1 = ̂ CL- (3) 
r2"~2 

Proof of (2): Substituting r = 2n~l and s = 2n~2 into the identity 

LrLs = Lr+s+(-l)sLr_s, (4) 
we obtain 

r2n~l 2"~2 

Proof of (3): Making the same substitution into the identity 

FsLr=Fr+s-(-iyFr_s, (5) 
we obtain 

2n~2 

Theorem 2: Let p = s (mod 4) be a prime, where s - ±1. Then, for n > 1, 

F*n _ l = pn-\ps)l2Lpn-\p+s)l2 ,gv 

V' 
and 

J7* , j = !f-l(p+s)/2 pn-\p-s)l2 (j, 
Pn F , 

Proof of (6): If we substitute r = i ? " - 1 ^ ) and 5 = p " " 1 ^ ) into the identity 

Fr+s = FrLs-(-iyFr_s, (8) 

and use the fact that F£n = Fn for n odd, then we obtain 

F* = p" = pn~l(p-£y2 P"~1(P+S)/2 , 

Proof of (7): This follows in the same way by setting r = p"" 1 !^ ) and j = ^""H^-)- Q 

i. For p = 3, formulas (6) and (7) have a particularly nice form: 

i $ - l = 4,-, and F3:+1 = Z2.3„_1. (9) 

2. For p = 5, formulas (6) and (7) are of not interest here, since F£, n>2, has 5 as an 
intrinsic factor [2, p. 252] and cannot be a prime. The numbers F*n/5 are dealt with in (26). 

J. For p = 7, formula (6) becomes the interesting formula 

r^n — 1 = Lrjn„\h^n-\-Liyrjn-\- (10) 

4 In general, if JV = -j (i^* ± 1) is a probable prime, then JV +1 = \ (F£ +1). 
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In the next theorems, the subscript of F£ has two different prime factors. 

Theorem 3: Let q be an odd prime, then for n > 1, 

F* n - (_l)(<?-l)/2 = qn-\q+l)l2rqn-\q-l)l2 , j jv 

and 

Also, for m > 2, we have 

F* + ( - 1 ) ^ - ^ 2 - g" \q+l)/2 q" !(g-l)/2 s^) 

and 

r 77 17 
17* _ 1 - 2m-lqn-\q+\)l2r2m-lqn-\q-\)i2 ( , ~x 

r2mq" l T V 1 J ' 

2 q L^m-Xf-X 

Proof of(11): Substituting r = q"-l{^) and s = cT\3±) mt0 Lr+s = 5FrFs + {-\)sLr_s, we 
obtain 

F* =
 F2qnqn-X qn 5Fq»-l(q+l)/2Fqn-l(q-l)/2 , n(q-l)/2 

qn 2gn qn gn 

Proof of (12): Making the same substitutions as in (11) into (4) leads to 

F* = q" =
 Lqn-\q+l)/2Lgn-\q-l)/2 , r^q-Y)l2 

2qn T T V V • 

V1 V1 

Proof of (13) and (14): These results are obtained similarly by using r = 2m~lqn~l(2±L) and 
s = 2m-lq"-l{£±) as in (11) and (12). D 

Theorem 4: If p<q,p and q odd primes, then for m, n > 1, 
cE 1 77 17 

77* _ , //"-y-1 V - y - 1 (q-lfpm-lqn-1 (<?+!) 
1 pmqn~l 

(15) 

Proof: For brevity's sake, put w = pn~lqn~l. Then, using the formula (see [5, p. 209, (79)], 
P-\ 

FPn = i(-V-£-(P;r)^-rFr2r, n odd, (16) 

we have that 

A ( - 1 ) ^ 5 — r />-,•> ^ y - i r / ° - ' g -
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FF -F F 
A wx pqw qw* pw 

= ̂ ±( - lX^(^- r )5^/r^_^ e i X ^P-rj 5 ^^ r a 

P-3 
2 

- ~ 7 - I Y 

p-3 

^ ^ i n r ^ 
S, ... /, (p-r\^-r\F^l-2r-Frl-2r 

^sF^F^i-F^ti-iy^f^;^ 
r=Q F-' V " ' I Fqw~Fw 

But, using the identity F^ - (-l)*(m 1}i^2 = i ^ + i ^ ^ - i ) w i t h k = w andnt = q,we have 

•^w^pqw ~~ •Fqvrpw 

— C I 7 77 17 77 
Jrqwrwrw(q-l)rw(q+l) l-^'r'H^^F}-

Thus, 

J7* 1 — pqw^w gw pw 
Ppqw ~ l ~ 17 F 

-*• qwx pw 

£-1 <—p-\-2r z7/?-l-2r> 

_ 5FwFw(q-l)Fw(q+l) V / i y P (p-r\^-r\FqPw * ~ Fw" [ 

It is worth while to give some special cases. 

Corollary 5: If q is a prime, then for m, n > 1, 
^/7 J7 /7 

P
3mgn-l 

and for q>7, 
9 C / 7 77 77 

J7* 1 - 5 3 5 3 (g"1) 5 9 (g+1) /z?2 . J72 A n $ n 
^5mfl« - I - ^ l^V-l^H + P

5m-\an-\ ~ *J • (1©) 
r5«V 

5m^« „ \^ 5m-l « -T- J- 5m-\ n 
•*• c m _ n - l 

The following are some further simple cases. Here q is a prime. 

^ - 1 = 1 ^ - 1 ^ , ^ 5 , (19) 

^ - 1 = 5 / ^ / ^ , ^ 7 , (20) 

and 

/ v ; - l = ̂ /^_1/V+1(25F/-10F?
2+4), qr^l l . (21) 

The next is a formula containing a "+1M. From numerical evidence, there seem to be few 
identities with a "+H that have a right side with a multiplicative structure. 

1998] 225 



NOTE ON FIBONACCI PRIMALITY TESTING 

Theorem 6: If q > 5 is a prime, then 

^ ; + i = ^ - (22) 

Proof: Using F3r = Fr(5F? +(-l)r3) and Zgr = Zr(5Fr
2 +(- l ) r ) , we find that Zg(F39 +2Fq) = 

LqFq(5Fq
2-3)+2FqLq = FqLq(5F*-l) = FqI^q. Thus, 

/Some Examples: We consider the factorizations leading to proofs of the primality of the prob-
able primes F*45, î *2853 and F*4203. In the first, we have 

F*45 = p;29 = -p0- = 349619996930737079890201. 

Then, by (20) and Tables 2 and 3 in [2], we find the complete factorization: 

5̂*29 ~ 1 = 5^28^9^30 = 5 ( A * M V X ^ 9 ( A 5 ^ ) 

= 5(3-281-29-13)(5142292)(22-ll-31-2-5-61). 

In the second, identity (20) gives 

^*285 ~ 1 = ^5*457 ~ 1 = 5 ^456^457^458 

= ^(^228M 14^57^7)^457(^229^29)5 

each factor of which is again completely factored using the tables in [2]. The primality of F*45 and 
^2285ls established, respectively, from these complete factorizations using Theorem 1 in [1]. 

In the third, identity (21) is used to obtain 

A 4203 ~~ 1 = ^7-2029 ~^ = TJ ^2028^030^ 

= IT ̂ 0 1 4 ^ 0 7 5 0 7 )(A°1 5 1015) ' 

where G = 25i^Q29-10i^Q29 + 4. As it happens, all the Fk's and Lk's can be factored completely 
and G is partially factored as G = 7-2629093-47472487-c, where c is a 1682-digit composite 
cofactor. Since the logarithm of the product of the 64 known prime factors in these factorizations 
(counting multiplicity) is about 33.9% of the 2544-digit number F*4203, the "cube root" Theorem 5 
in [1] can be used to establish the primality of this number. Fourteen of these factors have more 
than 20 digits. 

For another example, see [3, §4], where (18) is used in the primality proof of the 1137-digit 
probable prime î *225- A final example is the probable prime ^49 , for which not enough prime 
factors have been discovered to complete a primality proof. I would like to thank W. Keller for 
suggesting the above examples and for sending me information about them. 

The next theorem deals with those F*'s that have an intrinsic factor, which is divided out of 
the primitive part. Only the first power of an intrinsic factor can divide the primitive part. 
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Theorem 7: We have 

% + l = fl^ ̂ 2 , (24) 

% + l = ̂ „ n ^ l , (25) 

^ - 1 = 5 / ^ / 3 . , ^ , /1 > 2, (26) 

^ + 1 = ̂ ^ , ( 4 ^ , - 7 ^ + 1 4 ) , » > 1 . (27) 

Proof of (23) and (24): Using Zgr = Zr(Ar - (-1/) and 4 r = Z? - (-l) r2, we have 

Now, firom Z^-(-l) r5 = 4-i4+i> w e h a v e -̂ 3*2" ~ 2 = : ^ 2 M - 1 _ 5 = ̂ ^-A^+p from w h ich t h e 

identity follows. 
Also, from the equalities in (28), we have 

\^KT +2) = |(Z2„ +l) = i(Z^_1 -1) = ̂ (Z2„_, -1)(Z2„_, +1) 

^ ^ fc=2 t=2 k=\ 

Proof of (25): Using L,,. = Lr(L; - (-l)r3), we find that 
77 J7 T 

77* ^ " ^ r 1
 = IT = T2 _ o 

4-3" 17 F r ^2-S"-1 ' 
J 2-3" 4-3"-1 ^Z.3"-1 

which implies the result. 
Proof of(26): From (16), we obtain the formula F5r = 5Fr(5Fr

4 - 5Fr
2 +1), so 

% - 1 = ̂ f— 1 = 5 2 ^ ( / £ , -1) = SF^F^F^, 

using F? + {-W=Fr-iFr+x-

Proof of (27): From [4, p. 212, (86)], 

^|(-l)^V)^«odd, 

so L,„ = Z„(4 - 1L\ + ULI-7). Thus, 
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F* = F*rF*r-1 = i ^ - = L6.,„_, - 1L\„„_, + \4L]„„_, - 7 . n-\ 
'4-7n ' 

8-7" /7 C 7" 4-7""1 ' ^ 4 - 7 n - 1 4-7' 

from which the identity follows. D 

Remark: Numerical evidence suggests that, for n > 2, there are no multiplicative formulas for the 
even integers Nx = (F*3„ 13) - 1 and N2 - (F*n / 5) +1. On the other hand, if ±NX or y N2 should 
be probable primes, then the following formulas, which relate back to (24) and (25), might be 
useful in establishing their primality: 

2 l 2 
(K* \ Fl 4-3" + 1 

J 

and ~N7-l = — 2 2 2 
F* 

5~-l 

There are some other formulas involving F* and L* of various kinds, but these will not be 
considered here. 

We conclude this note by observing that the identities used in the proofs, such as those in (4), 
(5), and (8), each contain the factor (-1)*, which becomes the ±1 in the identity for F*±l. In 
general Lucas sequences, of which the pair {Fn}™=0 and {Ln}™=0 is a special case, this factor is Qs. 
Thus, the other Lucas sequences that have formulas like those in this note are those for which 
|g | = l(see[l,p.627]). 
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