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In [2], Cooper and Kennedy considered the following question: If {[/„} is a sequence satisfy-
ing a third-order linear recurrence, what is the degree of the recurrence satisfied by the sequence 
{(£4)2}? They gave the answer as 6. They then asked if there is a similar result for the sequence 
{(Unf), tossing this question out as a research problem. 

In [4], Prodinger answered this latter question in the affirmative, along with the more gen-
eral question dealing with linear recurrences of any order and arbitrary powers of the original 
sequence. In the case of the familiar Fibonacci (or Lucas) sequence (where the original sequence 
satisfies a second-order linear recurrence), Prodinger displayed the recurrences satisfied by 
{{Fn)k} (or {(Ln)k}) for # = 1,2,3,4,5,6, showing that such recurrences are all linear and of 
order (k +1). As Cooper and Kennedy had observed in [2], these latter recurrences had been 
obtained by D. Jarden [3] and are special cases of the following formula: 

k+i 
Y,(-l)jV+l)/2[k +1, JUK-jf = 0, k = l,2,...;n any integer. (1) 
y=o 

In this formula, the quantities [k, j]F are the Fihonomial coefficients defined by: 

[k,j]F = [k\]F/{[j\U(k-j)\]F}, 

where 0<j<k, with [m\]F = FlF2F3...Fnn m>l, and [0!]F = l. A table of Fibonomial coeffi-
cients is provided in Brother Alfred Brousseaufs compendium [1]. The formula in (1) is a special 
case of a more general formula (omitted here) due to Jarden and given in [3], involving certain 
sequences satisfying a second-order linear recurrence. 

It should be added that although Prodinger demonstrated the existence of the order of certain 
linear recurrences in more general cases than was explored by Cooper and Kennedy, he did not 
actually derive an exact expression for such order. We rectify this omission in this paper, and 
extend such result to an even more general situation. 

It seems natural to ask whether we can find similar results for the most general type of 
sequence satisfying a linear recurrence. It will be noted from recurrence theory that any sequence 
satisfying a linear recurrence possesses a characteristic polynomial of a certain degree with eigen-
values (also known as characteristic roots) of possibly multiple order. In general, such sequence 
is nonlinear. More specifically, we consider a sequence {[/„} of the following known form: 

m 

Un^WitXjr, (2) 
7=1 

where the 0j(n) are given polynomials in n of degree fj (with fj > 0), and the a -'s are distinct 
given constants. Such sequences are denoted as polynomial sequences. Incidentally, we note 
that, from the known expression for U„9 we may immediately write the characteristic polynomial 
Px(z) of the sequence, namely: 
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Pl(z) = fl(z-aJ)
l+r;. (3) 

/=i 

Observe that the sequence {(Un)k} (k = 1,2,3,...) also possesses a characteristic polynomial, 
which we denote by Pk(z). We let i^ represent the degree of Pk(z). By definition of the charac-
teristic polynomial, Pk(z) is the minimum polynomial such that Pk(E)(U^) = 0 (where E is the 
unit shift operator, i.e., Exn = xn+l). In other words, i^ is the order of the recurrence satisfied by 
the &* power of the original sequence. Our task is thus to determine k^ for k = 1,2,3,.... 

Indeed (given (3)), we immediately determine that 
m 

*i = Y(l + rj)- (4) 

We claim the following main result: 

Theorem: 
D /D \(k+m-l\ , (k+m-l\ / c x 

R* = ̂ -™\ k-i J+[ k )• (5) 
In particular, if ri = 0 for j -1,2,..., m, then the characteristic roots are of order one and 

Rx - m; in this case, 

This latter result is clearly a corollary of the Theorem. If the original recurrence has characteristic 
roots of single order, then the characteristic roots of the "power recurrence" are also of single 
order. For the particular case where Rl=m = 2.we obtain Prodinger's implied result: Rk - k +1. 

Proof of (5): We begin by expanding the k^ power of the given expression for Un, using the 
multinomial theorem: 

(u»)k= Z (,- ,•k i ]^i(»)(«i)n}"{^(»)(«2r}'2-{^(»)K)"}'"> 

where S(m, k) = {(/„i2,...,ij:ix +i2 + ••• +im = k, 0<,ij < k, j = 1,2,....m}, and (,„,2,fc..,,J is the 
multinomial coefficient evaluated as k\l {(/1)!(/2)!---0m)!} • Note that 

degree[{^(»)}'- {02(«)}" • • • {0ffl(»)H = 2>/y • 

We see that Pk(z) = ^ . ^ - ( a , ) ' 1 ^ ) ' 2 - (a J - } ^ " - ' - * , where 
m 

E{h,h,...,im) = \ + Y,rjij- (7) 

Therefore, 
^= Z£ft»^-.o- (8) 

It remains to evaluate the last expression. Towards this end, we employ a pair of lemmas. For 
convenience, we let UQn, k) denote 
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\S(m,k)\= £ l , 
S(m, k) 

the cardinality of S(m, k), and 

V(m,k)= £ / , . 
S(m,k) 

It follows (by symmetry) that 

V(m,k)= X J/3 7 = l,2,...,wf. 
S(iw,Jfc) 

Therefore, we see from (7) and (8) that Rk = C/(/w, k)+V(m, k)T!J=lrj, or 

/^=J7(ift,*) + (l^-m)K(m,*). (9) 

Lemma 1: 

U(m,k) = {^+™-iy (10) 

Proof (by induction on m): Let K denote the set of wi > 1 such that (10) is true (k being 
treated as fixed). Since S(l, k) = {k}, we see that t/(l, k) = 1 = ( |); therefore, 1 e JT. Suppose 
1 ,2 , . . . , /WG^. Now S(m + l, k) consists of those vectors in sm+l which have their first compo-
nent equal to ix and the remaining vector (an element of sm) equal to a vector in S(m,k-i^). 
Since ix varies from 0 to k, inclusive, it follows that 

U(m + \k) = ^U(mJ). (11) 

By the inductive hypothesis, 

We see that this result is the statement of (10) for (m +1). Thus, 
l929...,mGK=>l,2,...,m,m + leK. 

Induction completes the proof. • 

Lemma 2: 

V{m,k) = {^+
k
m_-iy (12) 

Proof: Reasoning as in the proof of Lemma 1, 

V(m,k) = fd(k-j)U(m-lJ). 
j=0 

Using the result of Lemma 1 and standard combinatorial manipulations, 

J=0 \ -* / j=m-2 V s j=m-l V / 

Then 

2000] 37 



ON THE DEGREE OF THE CHARACTERISTIC POLYNOMIAL OF POWERS OF SEQUENCES 

after simplification. Substituting the results of Lemmas 1 and 2 into (9) yields the Theorem. • 

As an illustration of our formula, consider the original sequence to be {U„} = {n2}. In this 
case, Px(z) = (z-1)3; hence, m = 1, ax = 1, rx - 2, Rt = 3. In other words, Un satisfies the third-
order linear recurrence: Un+3-3Un+2 +3Un+l-Un = 0. Then (Un)k = n2k, for which the charac-
teristic polynomial Pk(z) = (z- l)2k+l, and Rk = 2k + 1. In particular, R2 = 5 * 6. Thus, the result 
of Cooper and Kennedy [2] needs to be modified somewhat. Although it is true that the square of 
a sequence satisfying a third-order linear recurrence satisfies a linear recurrence of order 6, it may 
happen that such square sequence in fact satisfies a linear recurrence of order 5; in such case, its 
characteristic (i.e., minimal) polynomial has degree 5, rather than 6, Similar anomalies occur 
when the original recurrence has characteristic roots or multiplicity greater than one. The main 
theorem given in this paper treats all such cases with full generality, giving the minimum order of 
the appropriate recurrence. It needs to be emphasized, however, that this order is known only if 
the characteristic roots of the original sequence and their multiplicities are known in advance (or, 
equivalently, if the characteristic polynomial is known in advance, along with all of its factors). 
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