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1. INTRODUCTION 

In order to lend greater precision to statements of results and methods of proof, we begin our 
discussion with a definition. 

Definition 1.1: As usual, P:= {1,2,3,...}, N:=Pu{0}, and Z:= {0, + l,+2,...}. Then, for each 
»€N , 

r3(/i): = 2 2 2 

and q(ri) := the number of partitions of n into distinct parts. We define ^(0) : = 1 and q(ri) := 0 for 
n< 0. The function #(«), ^ e N, is generated by the infinite product expansion 

no+*")=i>(")*''> 
1 0 

which is valid for each complex number x such that \x\ < 1. 
As so many arithmetical discussions do, our discussion begins with Gauss, who first proved 

the following theorem. (The result was conjectured by Fermat about 150 years earlier.) 

Theorem 1.2: Every natural number can be represented by a sum of three triangular numbers, 
i.e., for each nsN, t3(ri) > 0. 

In this paper our major objective is to give an algorithmic procedure for computing t3(ri), 
n G N . This is accomplished by the following two results. 

Theorem 1.3: For each n e N, 

k e p [0, otherwise. 

Theorem 1.4: For each n GN, 

t3(n) = q(n)- £(- l)kq(n -3k2 + 2k)(3k-1) + X(-l)*?(w-3*2 -2Jfc)(3* + l). (1.2) 
keP keP 

For a proof of Theorem 1.3, see [1, pp. 1-2]. Section 2 is dedicated to the proof of Theorem 
1.4. 

2. PROOFS 

In our development we require the following three identities: 

no+^Xi-*2*"1)^; (2.1) 
i 
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nf^I*"^2; (2.2) 
! i x 0 

f r (1 - x2")(l - a V "-2)(1 - a-h2") f (3n+» ,„ 3n+2 

Identities (2.1) and (2.2) are valid for all complex numbers x such that |x| < 1, while (2.3) is 
valid for each pair of complex numbers a, x such that a ^ 0 and \x\ < 1. For proofs of (2.1) and 
(2.2), see [2, pp. 277-84]; for a proof of (2.3), see [3, pp. 23-27]. In passing, we observe that the 
cube of the right-hand side of (2.2) generates the sequence t3(n), n G N . Proof of Theorem 1.4 is 
facilitated by the following lemma. 

Lemma 2.1: For each complex number x such that | JC | < 1, 

ft^£& = £ (3» + lK(3"+2). (2-4) 
I {i + X ) ^ 

Proof: Multiply (2.3) by -a"1 to get 

(a - a ^ n ^ 1 1 ^ - f x^+2)(a3"+1 - a"3""1). 

Now we operate on both sides of the foregoing identity with aDa> Da denoting differentiation with 
respect to a, subsequently, let a -> 1 and cancel a factor of 2 to draw the desired conclusion. 

Returning to the proof of Theorem 1.4, we multiply both sides of (2.4) by 

na+x2-1)-1, 

and appeal to (2.1), where we let x -> -x, to get 

Q-x2")3 

S ( - i ) -^)x-=n^pb 
n=0 1 \ l ^ x ) 

=n o+(-*)")£ (3/?+1);<:"(3"+2) 
w = l - c o 

= Z ( - ^ ^ K X (3w+IK(3W+2)-
n=0 

Now we expand the product of the two series and, subsequently, equate coefficients of like 
powers of x to prove Theorem 1.4. 

Our algorithm proceeds in two steps: 
(i) Use the recursive determination of q in Theorem 1.3 to compile a table of values off, as 

in Table 1. 
(ii) Utilizing Theorem 1.4 and the values off computed in Table 1, we then compile a list of 

values of f3, as shown in Table 2. 
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TABLE 1 TABLE 2 

n 
0 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

q{n) 
1 
1 
2 
2 
3 
4 
5 
6 
8 
10 
12 
15 

n 
13 
14 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

q(n) 
18 
22 
32 
38 
46 
54 
64 
76 
89 
104 
122 
142 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

',(») 

1 
3 
3 
4 
6 
3 
6 
9 
3 
7 

7J 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

/3(#i> 

9 
6 
9 
9 
6 
6 
15 
9 
7 
12 

3. CONCLUDING REMARKS 

The brief tables above are compiled to show the effectiveness of the algorithm. For a fixed 
but arbitrary choice of n e P, we observe that: (1) to compute q(n) we need about -Jn of the 
values q(k), 0<k <n; and then (2) to compute t3(ri) we need q(n) and about «j4n/3 of the 
values q(k), 0<k <n. Doubtless, the formulas (1.1) and (1.2) can be adapted to machine com-
putation, and the corresponding tables can then be extended indefinitely. 

For given « G P , there are formulas that express t3(n) in terms of certain divisor functions. 
But, for each divisor function/, evaluation of f(k), k GP, requires factorization of k. By com-
parison we observe that our algorithm is entirely additive in character. In a word, no factorization 
is required. 
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