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1. INTRODUCTION

In order to lend greater precision to statements of results and methods of proof, we begin our
discussion with a definition.

Definition 1.1: Asusual, P:={1,2,3,...}, N:=PU{0}, and Z:={0,+1,+2,...}. Then, for each

nelN,
1,(n) ::H(h, j. k) eN3|n= h(h2+ D, j(j2+ D, k(k2+ 1)H;

and g(n) := the number of partitions of # into distinct parts. We define ¢(0):=1 and g(n) := 0 for
n<0. The function g(n), n € N, is generated by the infinite product expansion

[Ta+xn=3 gy,
1 0

which is valid for each complex number x such that |x| < 1.
As so many arithmetical discussions do, our discussion begins with Gauss, who first proved
the following theorem. (The result was conjectured by Fermat about 150 years earlier.)

Theorem 1.2: Every natural number can be represented by a sum of three triangular numbers,
i.e., foreach n e N, #(n)> 0.

In this paper our major objective is to give an algorithmic procedure for computing #,(),
n e N. This is accomplished by the following two results.

Theorem 1.3: Foreachne N,

qm+2), (-Dq(n-k*)=

keP

{(_1)m, if n=m(G3m+1)/2, (1.1)

0, otherwise.

Theorem 1.4: ForeachnelN,

L) =g - X (-Drqn -3k +26)Bk - D+ D (-Dq(n-3k*-2k)3k+1).  (1.2)
kelP keP

For a proof of Theorem 1.3, see [1, pp. 1-2]. Section 2 is dedicated to the proof of Theorem
1.4.

2. PROOFS

In our development we require the following three identities:
H(l+x")(1—x2"‘l) =1, 2.1
1
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T 1-x* 5 n(n+1)/2 .

1:[ 1— 21 ;x ; 2.2)
© (1 xln)(l a2x2n—2 1- a—2x2n © 3 . .
1 (1+ax2"_1)(1+3£1 1 - 23O —a ), 2.3)

Identities (2.1) and (2.2) are valid for all complex numbers x such that |x| < 1, while (2.3) is
valid for each pair of complex numbers a, x such that @ #0 and |x| < 1. For proofs of (2.1) and
(2.2), see [2, pp. 277-84]; for a proof of (2.3), see [3, pp. 23-27]. In passing, we observe that the
cube of the right-hand side of (2.2) generates the sequence #(), 7 € N. Proof of Theorem 1.4 is
facilitated by the following lemma.

Lemma 2.1: For each complex number x such that |x| <1,

H A=y =3 G+ hremD (2.4)

(1+x2n 1)2

-0

Proof: Multiply (2.3) by —a™" to get

- 1-x"(1-a*")(1-a ™) _ < .

(a a 1 ( — xn(3n+2) a3n+l_a 3n I\i\'

)ﬂ (1+ax2n 1)(1+a 1x2n 1) g ( 4

Now we operate on both sides of the foregoing identity with aD,, D, denoting differentiation with

respect to a, subsequently, let @ — 1 and cancel a factor of 2 to draw the desired conclusion.
Returning to the proof of Theorem 1.4, we multiply both sides of (2.4) by

H(l + x2n—-1)——1 ,
n=1

and appeal to (2.1), where we let x - —x, to get

Z( 1Y ()" —H =27y

(1 + x2n—1)3

= H a+ (—x)")z Gn+1)x"Cm+D

= Z( 1)"g(n)x" Z GBn+1)x"mD),
n=0

Now we expand the product of the two series and, subsequently, equate coefficients of like
powers of x to prove Theorem 1.4.

Our algorithm proceeds in two steps:

(i) Use the recursive determination of ¢ in Theorem 1.3 to compile a table of values of ¢, as
in Table 1.

(ii) Utilizing Theorem 1.4 and the values of ¢ computed in Table 1, we then compile a list of
values of #;, as shown in Table 2.
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TABLE 1 TABLE 2

n qm| n q@) n tmn tn)
0 1113 18 0 10

2 1|14 22 1 3111 6
3 2116 32 2 3112 9
4 2117 38 3 4113 9
5 3118 46 4 6114 6
6 4119 54 5 3115 6
7 5120 64 6 6|16 15
8 6|21 76 7 9(17 9
9 8122 89 8 3118 7
10 1023 104 9 7119 12
11 12124 122

12 15125 142

3. CONCLUDING REMARKS

The brief tables above are compiled to show the effectiveness of the algorithm. For a fixed
but arbitrary choice of n € P, we observe that: (1) to compute g(n) we need about +/n of the
values q(k), 0<k <n; and then (2) to compute #(n) we need g(n) and about +4n/3 of the
values q(k), 0<k <n. Doubtless, the formulas (1.1) and (1.2) can be adapted to machine com-
putation, and the corresponding tables can then be extended indefinitely.

For given n € P, there are formulas that express (n) in terms of certain divisor functions.
But, for each divisor function f, evaluation of f(k), £ € P, requires factorization of £. By com-
parison we observe that our algorithm is entirely additive in character. In a word, no factorization
is required.
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