SOME ORTHOGONAL POLYNOMIALS RELATED TO FIBONACCI NUMBERS

L. Carlitz

Duke University, Durham, North Carolina

1. We consider polynomials $f_n(x)$ such that

(1)
$$f_{n+2}(x) = (x+2n+p+1)f_{n+1}(x) - (n^2+pn+q)f_n(x)$$
 (n = 0,1,2,...),

where

(2)
$$f_0(x) = 0, f_1(x) = 1$$
.

It follows at once that $f_n(x)$ is a polynomial in x of degree n-1 for $n \ge 1$. The parameters p, q are arbitrary but we shall assume that

(3)
$$p^2 - 4q \neq 0$$
.

Let α , β denote the roots of the equation

(4)
$$x^2 - px + q = 0$$
.

In view of (3), the roots α , β are distinct and

(5)
$$\alpha+\beta=p$$
, $\alpha\beta=q$.

We shall construct a generating function for $f_n(x)$:

(6)
$$F(t) = F(t, x) = \sum_{n=0}^{\infty} f_n(x)t^n/n!$$

It is easily verified that (1), (2) and (6) imply

(7)
$$(1-t)^2 F''(t) - [(x+(p+1)(1-t)]F'(t) + qF(t) = 0 ,$$

where the primes indicate differentiation with respect to $\ t.$

It is convenient to define an operator.

(8)
$$\Delta = (1-t)^2 D^2 - (p+1)D + q \quad (D = d/dt)$$
.

Thus (7) becomes

(9)
$$\Delta F(t) = xF'(t) .$$

Supported in part by NSF grant GP 1593.

Consider

$$\Delta (1-t)^{-\alpha-k} = \left\{ (\alpha+k)(\alpha+k+1) - (p+1)(\alpha+k) + q \right\} (1-t)^{-\alpha-k}.$$

Making use of (4) we find that this reduces to

(10)
$$\Delta (1-t)^{-\alpha-k} = k(2\alpha-p+k)(1-t)^{-\alpha-k}.$$

Thus, if we put

(11)
$$\Phi (t, \alpha) = \sum_{k=0}^{\infty} \frac{(\alpha)_k x^k}{k! (2\alpha - p + 1)_k} (1 - t)^{-\alpha - k} ,$$

where

$$(a)_{k} = a(a+1) \dots (a+k-1)$$
,

we get

$$\Delta \Phi (t, \alpha) = \sum_{k=0}^{\infty} \frac{(\alpha)_{k+1} x^{k+1}}{k! (2\alpha - p + 1)_k} (1-t)^{-\alpha - k - 1}.$$

We have therefore

(12)
$$\Delta \Phi (t, \alpha) = x \Phi'(t, \alpha)$$

and in exactly the same way

(13)
$$\Delta \Phi (t, \beta) = x \Phi'(t, \beta) .$$

It follows from (11) that

$$\Phi (t, \alpha) = \sum_{k=0}^{\infty} \cdot \frac{(\alpha)_k x^k}{k! (2\alpha - p + 1)_k} \sum_{n=0}^{\infty} \frac{(\alpha + k)_n}{n!} t^n$$

$$= \sum_{n=0}^{\infty} \frac{t^n}{n!} \sum_{k=0}^{\infty} \frac{(\alpha)_{n+k} x^k}{k! (2\alpha - p + 1)_k} .$$

If we put

(14)
$$\phi_{n}(x, \alpha) = \sum_{k=0}^{\infty} \frac{(\alpha)_{n+k} x^{k}}{k! (2\alpha - p + 1)_{k}},$$

then we have

(15)
$$\Phi (t, a) = \sum_{n=0}^{\infty} \Phi_{n}(x, a)t^{n}/n! .$$

Note that (14) implies

(16)
$$\phi_n(x, a) = (a)_n \cdot {}_1F_1(a+n; 2a-p+1; x)$$
,

where 1F1 denotes a hypergeometric function in the usual notation.

2. If we make use of (12) and (15) we find without much difficulty that $\phi_n(x, a)$ satisfies the recurrence

(17)
$$\phi_{n+2}(x, \alpha) = (x+2n+p+1)\phi_{n+1}(x, \alpha) - (n^2+pn+q)\phi_n(x, \alpha) \ (n \ge 0)$$
.

Clearly $\phi_n(\mathbf{x}, \boldsymbol{\beta})$ satisfies the same recurrence. Thus any linear combination

$$\psi_n(\mathbf{x}) = \mathbf{A}\phi_n(\mathbf{x}, \alpha) + \mathbf{B}\phi_n(\mathbf{x}, \beta)$$
,

where A, B, are independent of n but may depend on x, α , β , will also satisfy (17).

We choose A, B so that

(18)
$$\psi_0(x) = 0, \quad \psi_1(x) = 1$$
.

This requires

$$AC = \phi_0(x, \beta), \quad BC = -\phi_0(x, \alpha)$$

where

(19)
$$C = \phi_1(\mathbf{x}, \alpha) \phi_0(\mathbf{x}, \beta) - \phi_1(\mathbf{x}, \beta) \phi_0(\mathbf{x}, \alpha) .$$

It is clear by comparison of (17) and (18) with (1) and (2) that

$$\psi_{n}(x) = f_{n}(x)$$
 (n = 0, 1, 2, ...).

We have therefore

(20)
$$f_{n}(x) = \frac{\phi_{n}(x, \alpha) \phi_{0}(x, \beta) - \phi_{n}(x, \beta) \phi_{0}(x, \alpha)}{C}$$

with C defined by (19).

Thus by (6) and (15)

(21)
$$F(t) = C^{-1} \left\{ \Phi(t, \alpha) \phi_0(x, \beta) - \Phi(t, \beta) \phi_0(x, \alpha) \right\},$$

so that we have obtained a generating function for $f_n(x)$.

3. In addition to the polynomial $f_n(x)$ we may construct a second solution $g_n(x)$ of (1) such that

(22)
$$g_0(x) = 1, g_1(x) = x+p+1$$
.

Thus $g_n(x)$ is a polynomial in x of degree n. By exactly the same method we have used above, we find that

(23)
$$g_n(x) = -2 \frac{\phi_n(x, \alpha) \phi_1(x, \beta) - \phi_n(x, \beta) \phi_1(x, \alpha)}{C} + (x+p) f_n(x)$$
.

If we put

(24)
$$G(t) = G(t, x) = \sum_{n=0}^{\infty} g_n(x) t^n/n!$$

it follows that

(25)
$$G(t) = -2 \frac{\Phi(t, \alpha)\phi_{1}(x, \beta) - \Phi(t, \beta)\phi_{1}(x, \alpha)}{C} + \frac{x+p}{C} \left(\Phi(t, \alpha)\phi_{0}(x, \beta) - \Phi(t, \beta)\phi_{0}(x, \alpha)\right)$$

If the coefficient $n^2 + pn + q$ occurring in (1) is positive for all $n \ge 0$ then by a known result [1] we can assert that the polynomials $g_n(x)$ are orthogonal on the real line with respect to some weight function. The same remark applies to the $f_n(x)$. It would be of interest to explicitly determine these weight functions.

4. We have assumed in the above discussion that α and β are distinct. When α and β are equal we may replace (1) by

(26)
$$f_{n+2}(x) = (x+2n+2\alpha+1)f_{n+1}(x) - (n+\alpha)^2 f_n(\alpha)$$
 (n = 0, 1, 2, ...)

We now put

(27)
$$\phi_{n}(x) = \sum_{k=0}^{\infty} \frac{(a)_{n+k}}{k! \, k!} x^{k},$$

(28)
$$\Phi(t) = \sum_{n=0}^{\infty} \phi_n(x) t^n / n! = \sum_{k=0}^{\infty} \frac{(a)_k^{k}}{k! \, k!} (1-t)^{-\alpha-k}.$$

It is easily verified that

(29)
$$\phi_{n+2}(x) = (x+2n+2\alpha+1)\phi_{n+1}(x) - (n+\alpha)^2\phi_n(x)$$
 (n = 0, 1, 2, ...)

and that

(30)
$$\Delta \Phi (t) = x \Phi'(t) .$$

As a second solution of (26) we take

(31)
$$\psi_{n}(x) = \sum_{k=0}^{\infty} \frac{(\alpha)_{n+k}}{k! k!} (\sigma_{n+k}(\alpha) - 2\sigma_{k}) x^{k},$$

where

(32)
$$\sigma_{k}(\alpha) = \frac{1}{\alpha} + \frac{1}{\alpha+1} + \dots + \frac{1}{\alpha+k-1},$$

$$\sigma_{k} = \sigma_{k}(1) \cdot 1 \cdot 1 + \frac{1}{2} + \dots + \frac{1}{k}.$$

We omit the proof that $\psi_n(x)$ does indeed satisfy (26). It is convenient to put

(33)
$$\Psi(t) = \sum_{n=0}^{\infty} \psi_n(x) t^n/n! .$$

It can be verified that $\dot{\Psi}$ (t) also satisfies (30).

If we now put

(34)
$$f_{n}(x) = \frac{\phi_{n}(x) \psi_{0}(x) - \phi_{0}(x) \psi_{n}(x)}{\phi_{1}(x) \psi_{0}(x) - \phi_{0}(x) \psi_{1}(x)} \qquad (n = 0, 1, 2, ...) ,$$

then we have

(35)
$$f_0(x) = 0, \quad f_1(x) = 1$$
.

Thus $f_n(x)$ is a polynomial of degree n-1 in x for $n \ge 1$ and is the unique solution of (26) that satisfies (35).

Similarly if we put

(36)
$$g_{n}(x) = 2 \frac{\phi_{1}(x)\psi_{n}(x) - \psi_{1}(x)\phi_{n}(x)}{\phi_{1}(x)\psi_{0}(x) - \phi_{0}(x)\psi_{0}(x)} + (x+2\alpha+1)f_{n}(x)$$

then

(37)
$$g_0(x) = 2, \quad g_1(x) = x + 2\alpha + 1$$
.

Thus $g_n(x)$ is a polynomial of degree n in x and is the unique solution of (26) that satisfies (37).

Explicit formulas for the generating functions $\,\Phi(t)\,$ and $\,\Psi(t)\,$ can now be stated without any difficulty.

Here again it would be of interest to explicitly determine the weight functions connected with $\left\{f_n(x)\right\}$ and $\left\{g_n(x)\right\}$, respectively.

REFERENCE

 J. Favard, Sur les polynomies de Tchebicheff, Comptes rendus de l'Academie des Sciences, Paris, vol. 200 (1935), pp. 2052-2053.