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0, INTRODUCTION 

Let Z denote the set of integers, P denote the positive integers, and N denote the nonnegative 
integers. Define the Collatz mapping T: 2N +1 -> 2N +1 by T(x) = (3x +1) / 2J, where V \3x +1 
but 2-/'+1|3x + l. The famous 3x + l Conjecture, or Collatz Problem, asserts that, for any x e 
2N + 1, there exists k eN satisfying Tk(x) = 1, where Tk denotes k compositions of the function 
T. This paper's version of the Collatz mapping is also found in [4], whereas the most commonly 
used version is given in the comprehensive survey of Lagarias [6] and the research monograph of 
Wirsching [9]. It is obvious that our formulation of the 3x + l Conjecture is equivalent to those 
given in [6] and [9]. 

It is natural to study the 3x +1 Conjecture in terms of the directed graph G2N+1 with vertices 
2N +1 and directed edges from x to T(x). A portion of this graph, known as the Collatz graph 
[6], is displayed in Figure 1. A slightly different version of the Collatz graph, which includes the 
positive even integers, is presented in [6], whereas G2N+l excludes these with the purpose of 
making upcoming properties of certain vertices more transparent. 

Figure 1. The Collatz Graph C2N+1 (T4(x) = l,x< 150) 

A directed graph is said to be weakly connected if it is connected when viewed as an 
undirected graph, and we will call a pair of vertices weakly connected if they are connected by an 
undirected path. Using these graph-theoretical considerations, the 3x +1 Conjecture can be re-
stated as follows: 

3x +1 Conjecture (1st form): The Collatz graph is weakly connected. 
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Our immediate goal is to identify a collection of vertices of G2N+1 which have a certain con-
nectivity property (Section 1). We then use this result to analyze new directed graphs with vertex 
sets contained in 2N + 1 for which weak connectivity also implies truth of the 3x + l Conjecture 
(Sections 2 and 3). Some conditions under which vertices of these new graphs are weakly con-
nected are given. Certain numbers x satisfying the condition that T2(x) =1 are discussed in Sec-
tion 4. (A different characterization of some positive integers satisfying Tk(x) = 1 can be found in 
[2].) In Section 4, we also prove the facts that cycles and divergent trajectories in our new graphs 
induce cycles and divergent trajectories in the original Collate graph. 

1. VERTICES WITH A SPECIAL CONNECTIVITY PROPERTY 

To identify our vertex set, we need a few preliminaries. For x E 2 N + 1, the total stopping 
time of x, denoted a(x), is the least whole number & satisfying Tk(x) = 1. (If no such k exists, set 
CT(X) = OO.) Define the binary relation « on 2N + 1 as follows: x^y if and only if there exists 
& e N with k < min(cy(x), a(yf) satisfying Tk(x) = Tk(y). Clearly; « is an equivalence relation, 
hence each x G 2 N +1 belongs to an equivalence class Cx. Observe that a(x) = a(y) < oo implies 
that x&y, and furthermore, the set Lk = {x e2N +11a(x) = k} is an.equivalence class under «. 

Progress has been made recently in determining the density of positive integers x satisfying 
er(x) < oo. The strongest known result is in [3], where it is shown that, if n(x) counts the number 
of integers n satisfying \n\ < x and a(n) < oo? then, for all sufficiently large x, K(X) >xu. Impor-
tant groundwork for this result was provided by Krasikov [5], who used a scheme of difference 
inequalities to show that TT(X) > x3/?. A stochastic approach for analyzing total stopping times is 
presented in [7], and a thorough summary of currently known total stopping time results can be 
found in [9]. 

It also bears mentioning that, throughout the literature, there is a distinct difference between 
stopping time and total stopping time. The stopping time of x is defined to be the least positive 
integer k for which Tk(x) < x. The most important stopping time result is given in [8], where it is 
shown that the density of positive integers with finite stopping time is 1. 

We are not ready to state and prove our first result, which can also be found in [1]. The 
proof reveals properties of certain vertices of the Collate graph which are useful later; therefore, it 
is presented here. 

Theorem 1: If x > 5 is the smallest element in Cx, then there exists n e P such that T"(x) = 
F(2x + 1). 

Proof: Let A^ denote the arithmetic progression {2n+2m + 2n -1}^= 0 ? and let Bn denote the 
arithmetic progression {2n+2m + 2n+l + 2n -1}^0. If we let Sx = U„e2N+i(4i), S2 = \J„€2r(BJ, 
^3 = UW€2P(42)?

 a n d S4 = Dne2N+i(Bn), it is easy to verify that {Sl9 S2, S3, S4} is a partition of 
2N +1. We now show that x e S3 o S4 is impossible. If x e S3, write x = 2n+2m + 2" - 1 , where n 
is even, and if x E S4 and n - 1, choose y satisfying 4y +1 = x, else choose y satisfying 2y +1 = x. 
In all cases, a straightforward computation, taking parity of n into consideration when necessary, 
shows that T"(x) = T"(y). Hence y » x with y < x, contradicting the fact that x is smallest in its 
equivalence class. Therefore, x £ S3 u 54, so x e Sx u S2. If x e Sx, write x = 2n+2m + 2n - 1 with 
n odd, and if x e S2, write x = 2""1"2 m + 2n+l + 2n -1 with n even. Again applying the Collate func-
tion n times and taking parity of n into account, we obtain T"(x) = Tn(2x +1). D 
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Corollary 1 follows easily from Theorem 1. 

Corollary 1: If x is the smallest element in Lk, then the vertices x and 2x4-1 of G2N+1 are weakly 
connected. 

2* REDUCING THE VERTEX SET OF THE COLLATZ GRAPH 

We now construct a new directed graph whose vertices are the smallest elements of the 
equivalence classes under «. The primary tool used is a mapping f induced by the Collate map-
ping. The construction has the advantage of reducing the set of vertices of the Collate graph, but 
the disadvantage of sacrificing some information about T(x). 

Let M - {x e 2N + l|x < y for all y e Cx}. For S c P, define x{$) to be the smallest ele-
ment of S. Define f:M-+M by t(m) = X(CT(m)). Due to the fact that every vertex of the 
Collate graph is weakly connected to some m e M, the following statement is equivalent to the 
3x + l Conjecture. 

3x + l Conjecture (2nd form): The directed graph GM with vertices M and directed edges from 
m to T(m) is weakly connected. 

9 1 

A 
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A 

I 3 
A 

I 17 
A 

1 11 
A 

1 7 

FIGURE 2e The Graph GM (a(x) < 5) 

A portion of GM is displayed in Figure 2. The graph GM, in effect, collapses the vertices of 
G2N+1 whose trajectories enter M9 thereby reducing the set of vertices necessary to connect. 
Despite this reduction in the vertex set, it turns out that weak connectivity can be established for 
certain pairs of vertices of GM, as shown in the next three theorems. 

Theorem 2: Let XGM with x = 5 (mod 6), and define T~l(x) to be the smallest y in 2N + 1 
satisfying T{y) - x. Then x and Tl(x) are weakly connected vertices of GM. 

Proof: Letting x = 6t + 5, it follows that rl(x) = 4t + 3. We must show that 4t + 3 is a 
vertex of GM. If 4/+ 3 is not in M, then there exists w <4t + 3 with w « 4^ + 3, and using the 
definition of «, it follows that T(w) « T(4t + 3) = x. Since x G M , we obtain x < T(w), and this 
yields 
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67 + 5 < :—, where />1 . 
2J 

Substituting the inequality w < 47 + 3 yields 
6 f + 5 <3(4r + 3) + l = 12L±10 = 6 / + 5 

2J V 
a contradiction. Hence, x = 4t + 3 is a vertex of GM. Finally, since 

f(r\x)) = z(cnr>ix))) = z(.cx) = x, 
we have x and T~\x) weakly connected. D 

Remark: If x e M with x = 1 (mod 6), then ^ ( x ) is not necessarily in M. For example, 379 = 
X(Ll9) and 283 = ̂ (Z20), but r ! (379) = 505. 

Theorem 3: Let x e M with x = 1 (mod 8), and let y = X(CT(X))• Assumey is not a multiple of 
3. Then J(x) = y, and x and y are weakly connected vertices of GM. 

Proof: Let x = %k +1. If J(x) * j , then j = x(CT(x)) implies that >> < T(x) and j » J(x). 
Also, by hypothesis, j must be of the form 67 +1 or 67 + 5. If j = 67 +1, then j < J(x) gives 
67 + 1<6& + 1, hence t<k. Also, j ^ T ^ x ) implies 7"1(y)^x, where F"1^) is the smallest 
inverse image ofy under T. Therefore, 87 +1« x, and since x e M, we must have x < 87+1. This 
yields 8* + l<S7+l, hence k < t, a contradiction. If j is of the form 67 + 5, then j < T(x) yields 
67 + 5 < 6*+ 1, hence 7<* . The condition T~l(y)^x yields 47 + 3 ^ x , hence 8* + l <47 + 3. 
Substituting the inequality t <k yields 87+l<47 + 3, again a contradiction. Therefore, T(x) = j 
must hold. Since F(x) = j(Cr(JC)) = j , it follows that x and j are weakly connected vertices of 
GM. D 

Theorem 4: Let x e M with x = 25 (mod 64), and let j = x(CT{x)) • Then j = [3(x -1)] / 8, and 
the vertices x and [3(x -1)]/ 8 are weakly connected. 

Proof: Let x = 64k + 25. Simple computations show that T(x) = 48* + 19 and that 

j^flMzl^^Tix)). 

Therefore, fT(x) -1] / 2 « T(x), hence T(x) & y. Also x = 1 (mod 8), so we can apply Theorem 3 
to see that j must be a multiple of 3. Let j = 37. By Theorem 1, we have y&2y + l = 6t + l. 
Since J(87 + l) = 67 + l, we have J(87 + l ) ^ j ; , and using the fact that y&T(x) along with the 
transitivity of », we obtain J(87 +1) « T(x). Using the definition of «, it follows that 87 +1« x, 
and since x e M , we have x<87 + l. Furthermore, y « T(x) ̂ [T(x)-~l]/2 = 24*+ 9; thus, by 
the minimality of j , we see that 37 < 24*+ 9. From this inequality, we get f(37) + l< 
j(24* + 9) + l which yields 87 + l < x . Therefore, x = 87 + l, hence j = [3(x-l)]/8. It follows 
that f(x) = [3(x -1)] / 8 and that x and [3(x -1)] / 8 are weakly connected. • 

Observe that, if x > 5 is a vertex of GM, then, by the proof of Theorem 1, it must be true that 
x GS1KJS2. We can actually restrict the vertex set of GM slightly further, according to the next 
theorem. 
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Theorem 5: If x is In the arithmetic progression {32m +17}^=1, then x is not a vertex of GM. 

Proof: We will assume x GM and find a contradiction. Let x = 32^ +17with k > 1, and let 
J = #(Cr(x)) • Since 7(x) = 24^ + 13 and J(24& +13) = T(6k + 3), it follows that J(x) * j ; . Also, 
x = 1 (mod 8) and x e M , so we can apply Theorem 3 to see that y must be a multiple of 3. 
Now,, y « 2 j +1 by Theorem 1 and j « T(x) by the definition of y, hence J(x) « 2 j +1. Since y 
is a multiple of 3, T~l(2y +1) = fy +1, we have x ^ f j + 1 . This yields x < f j + l, and since 
y « T(x)« 6A: 4- 3, we have j < 6A: + 3. Combining these inequalities yields x < 16k + 9, a contra-
diction. Therefore, x g M? and x is not a vertex of GM. • 

Remarks: A further systematic reduction of the vertex set beyond that of Theorem 5 would be of 
interest, as would further development of the weak connectivity results given in Theorems 1-4. It 
would also be interesting to state conditions which, when combined with the theorems in this 
section, would be sufficient to guarantee weak connectivity of GM; in fact, 17 GM. 

3. A DIFFERENT REDUCTION OF THE VERTEX SET 

We now reduce the vertex set of the Collatz graph to a set properly containing M, and use 
this set to construct a new directed graph for which weak connectedness is equivalent to truth of 
the 3x +1 Conjecture. First, we need some preliminaries to help describe our vertex set. If we let 
f(x) = 4x +1 and g(x) = 2x +1 and let Mb defined as in Section 2, we have the following lemma. 

Lemma 1: Let x e M, n e N, and 8 e {0,1}. Then fn(x) e Cx when x > 1, and fngs{x) G CX 

whenx>5. 
Proof: When x > 1, a quick computation shows that T(f(x)) = T(x), thus T(fn(x)) = T(x), 

and hence fn(x) G CX for n G N. When x > 5, we can apply Theorem 1 to obtain gfix) G CX9 SO 
fngd(x)GCx. U 

For x > 5 , let Gx = {fngs(x)\n G N , 5 e{0,1}}; for x = 3 and x = 5, let Gx = {fn{x)\n GN}. 
Note that Gx consists of a collection of vertices for which weak connectedness to x in the Collatz 
graph has been established. For convenience, set Gx = {1}. Lemma 1 implies that. G x c C x ; there-
fore, it makes sense to study the vertices of Cx apart from Gx. We do so using the following 
inductive definition. 

Definition: For j GN\ the 7th exceptional number in Cx is the smallest positive integer Xj satis-
fying Xj GCX-U/=O GXi_x, where Gx_{ = 0. 

To clarify the previous definition, consider the example 
G25 = {25,101,405,...}u{51,205,821,...}. 

Since <r(25) = 7, it follows that C25 = {x G P \a(x) - 7}. Direct computation shows that 217 is the 
smallest positive integef in C25 - G25, hence 217 is the first exceptional number in C7. Repeating 
the process, we compute 

G217 = {217,869,3477, ...}u{435,1741,6965,...}, 
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and hence can verify that 433 is the smallest positive integer in C25 - {G25 ^J G217}. Therefore, 433 
is the second exceptional number in C25. A table of exceptional numbers satisfying a(x) < 10 and 
j < 4 is provided below. 

TABLE 1. Exceptional Numbers (a(x) < 10, j < 4) 

<T{X) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

X 
1 
5 1 
3,113, 7281,466033, 29826161 
17,75,1137,2417,4849 
11,201,369,401,753 
7,241,267,497,537 
9,81,321,331,625 
25,49,217,433,441 
33, 65, 273, 289, 529 
43,89,177,385,423 
57, 59, 465, 473, 507 

Let E denote the set of all exceptional numbers 2N +1. Using the methods of the proof of 
Theorem 4 of [1], it can be shown that, for a(x) > 1, Cx - U J U G V J = 0 for all j G N, hence, in 
this case, each j > 0 gives a distinct element of E. Furthermore, the following lemma gives a 
complete description of the set E. 

Lemma2: S1KJS2U{\5} = E. 

Proof: The fact that EC:$1KJ$2\J {3,5} is an immediate consequence of Lemmas 6 and 7 of 
[1] and Theorem 1. Therefore, we will show that Sl u S2 u {3? 5} e E. If x e 5i u S2 u {3,5} 
with x< 11, numerical computation shows that x e £ , thus we will show that, if x> 11, then 
x GS1^JS2 gives x GE. If x &E, then x = fngs(y) for some } / G £ . If n> 1, then x G8M + 5, 
which is impossible, hence n-0. Therefore, x = g^(y) for some y GE. If 5 = 0, we obtain 
x = j , which contradicts the fact that x&E. Hence 8 = 1; thus x = 2 j +1. Since X G ^ U ^ , 
this yields y GS3^JS4 with j > 5, which contradicts the fact that j e ^ c ^ u ^ u f ^ S } . Hence, 
our assumption that x g JE must be false. • 

Remark: Using the equivalence classes defined in Section 1, the proofs of Theorems 3 and 4 of 
[1] can immediately be generalized to the case where a(x) < oo. 

The primary purpose of Lemma 2 is to establish weak connectivity between certain vertices 
of a new directed graph (see Theorem 7). However, it is interesting to note that we can use 
Lemma 2 and the proof of Theorem 1 to immediately establish the following theorem, which is 
also given in [1]. 

Theorem 6: Let x GE with x > 5. Then there exists i e N such that 7*(x) = Tk(2x +1). 

We now use the sets Gx to construct a new partition of the positive odd integers. This par-
tition will enable us to define a new directed graph. 

Lemma 3: Let 9 = {Gx \ x G E). Then 2? is a partition of 2N +1. 
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Proof: Since 
UxeMCx = 2N + l and Cx = \JxeCxf^GX9 

it follows immediately that 

UX6*GX = 2N + 1. 

It remains to show that, if x and y are in E, then Gxr\Gy = ® when Gx*Gy. We will prove this 
by contradiction. If z e Gx n Gy9 then 

* = /V'(*) = /*£* GO, 
where % ^ e JV, 8h82G {0,1}, / (x) = 4x +1, and g(x) = 2x +1. Without loss of generality, we 
can consider three cases: Sl = 82=0',8l = 0 and 82 = l; and ^ = S2 = 1. 

In the first case, we have 

and since we can assume nx <«2 without loss of generality, we obtain x=/"2~Wl(y). Assume 
x & 5, as the theorem follows trivially in this case. If r^ -nx = 0, then Gx = G,, is a contradiction, 
and if nx -j\ > 0, we have x of the form 8m+ 5 with /w> 1 and x GE, which contradicts Lemma 
2. Hence, in any event, Sx = 82 - 0 is impossible. 

In the second case, we have 

If rty = n2, then x = 2y +1, hence XGG^. Since Theorem 6 implies that x eCy, we have contra-
dicted the fact that x G E. If Wj < Wj, then x = /w2-"i (2j = 1); therefore, x is of the form 8m + 5 
with m;> 1. Since x GE, we have again contradicted Lemma 2. If r^ < w1? we obtain 2 j +1 = 
/Wl-W2(x), which implies that 2y + l is of the form 8#i + 5, contradicting the fact that y is odd. 
Hence, in any event, Sx - 0 and 82 = 1 is impossible. 

Finally, the third case gives 

/^ (2x + l) = / ^ ( 2 j ; + l). 

Again, without loss of generality, assume n, < r^. If fy = /^, then x = y, hence Gx = Ĝ  is a 
contradiction. If/^ < w^-then 2x + l = fri2~ril(2y + l) implies that 2x + l is of the form 8/w + 5. 
This forces x to be even, again a contradiction. Thus, 8l = 82 = l is also impossible, and hence 
our assumption that Gxr\Gy = $ must be false. D 

Using the partition 2?, we define the equivalence relation ~ as follows: x~ y if and only if x 
andy are in Gx for some z GE. Denote by Ex the equivalence class under - which contains x. 
For e GE, define T :E -> E by T(e) = x(ET^). We now obtain another formulation of the 
3x + l Conjecture. 
3JC + 1 Conjecture (3rd form): The directed graph GE with vertices E and directed edges from e 
to T(e) is weakly connected. 

A portion of the directed graph GE is displayed in Figure 3. The graph GE collapses some 
vertices of G2N+t whose trajectories enter E9 while at the same time retaining enough vertices to 
permit establishing of substantial weak connectivity. 
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FIGURE 3. The Graph GE (a(x) <5J<4fx< 5000) 

Now let S{ and S2 be defined as in the proof of Theorem 1, and let S = Si u 5 2 - 1 . For x not 
a multiple of 3, let T~l(x) be the smallest y in 2N +1 satisfying T(y) = x, and define 

rl(S) = {rl($)\seS-3F}. 
We then have the following results. 

Lemma4: r\S)^S. 
Proof: If x e Sx, let x = 2W+2#i + 2W - 1 with « E 2N +1. By considering congruences of /n 

modulo 3, we see that x can be expressed in one of the following three forms: 

x = 3.2*+2£ + 2 w - l ; 
x = 3.2"+2£ + 2w+2+2w-l; 
x=3-2w+2Jt + 2w+3 + 2w-l . 

If x is of the first form, then n odd yields x = 1 (mod 6). This gives 

r!(x) = 4 x - l 

Hence ^ ( x ) = 1 (mod 8), and therefore T~l(x) e S. 
If x is of the second form, then n odd yields x = 0 (mod 3), hence T~l(x) does not exist. 
If x is of the third form, then n odd yields x = 5 (mod 6). This gives 

r 1 ( x ) = ^ - i = 2w+3* + 2w+2 + 2J n+l 1, 

hence T~l(x) eS2. If x e S2, let x = 2w+2m+2w+1 +2" - 1 with w e 2P. Again considering con-
gruences of m modulo 3, x can be expressed in one of the following three forms: 
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x = 3-2'*2k + 2r1 + 2n-l; 
x = 3 • 2"+2k + 2"+2 + 2"+1 + 2" - 1 ; 
x = 3-2"+2k + 2"+3 + 2"+1+2"-l. 

If x is of the first form, then x = 5 (mod 6). Therefore, 

r\x) = ^~- = 2"+3k + 2"+1 - 1 , 
and hence T~l(x) G 5i. 

If x is of the second form, then x = 0 (mod 6), and thus 7^(x) does not exist. 
If x is of the third form, then x = 1 (mod 6) and, as before, T~l(x) = 1 (mod 8), and thus is in 

Sv Hence, in all cases, T~l(x) G S. D 

Theorem 7; Let x be an element of E. Then the vertices x and 7^!(x) of GE are weakly con-
nected. 

Proof; We first show that x G E yields J^!(x) G E. We can assume without loss of gener-
ality that x > 5. Letting x G E and applying Lemma 2, we see that x G SX ^J S2. Applying Lemma 
3 gives T~l(x) eSl<u82~l, and again applying Lemma 2, we obtain T~l(x) GE. Finally, we get 

T(T\x)) = X(ET(T-l(x))) = X(EX) - x, 

hence x and T~\x) are weakly connected. D 

4. TOTAL STOPPING TIMES OF CERTAIN EXCEPTIONAL NUMBERS 
AND CYCLES UNDER INDUCED MAPS 

One possible approach to establishing weak connectedness of GE is to characterize all x G E 
with a given finite total stopping time, and to apply T~l repeatedly to those vertices. By Theorem 
7, these inverse images would also be vertices of GE, and perhaps would substantially 8Till up" the 
set of all vertices o£GE. All x G E satisfying a(x) < 2 are described in Lemma 5 and Theorem 8. 

Lemma §: Let x G E, and let f(x) = 4x +1. Then a(x) = 1 if and only if x = 5. 
Proof: It is well known that, for any x G 2N +1, a(x) = 1 if and only if x = j(4n+l -1) for 

some neP (see [4]). Since 

4(4"+1-1) = Z4/=/l|-1(5) 
and since x G E, we must have x = 5. D 

Lemma 6: Let 
% f3m \ i ( 3m-2 

JVi=o J J V /-o 

Then4 = {aOT5jOT,WGP}u{^Jiw,WGP}. 

Proof: The fact that amt„ and bn%n are in L2 is easily verified by computation of J^(aWjW) 
and I^ib^J. Thus, we need to show that L2 c {a^Jm, H G P } U {bMtn \m9 n G P). If x G Z,2, 
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thenr(r(x)) = l, hence T(x) = ±(4k+l-l) for some k G¥. Since T(x) = (3x +1)/2j for some 
j G P, we obtain 

z J 1=0 

hence 2> Sf=0 4' = 1 (mod 3). This yields2'(/t +1) = 1 (mod 3). Thus, if/ is even, we have k = 0 
(mod 3), and if/ is odd, we have & = 1 (mod 3). In the first case, setting j = In and k = 3m gives 
x = amn;'m the second case, setting j = In - 1 and k - 3m - 2 gives x-bm^n. D 

If we let x e £ with a(x) = 2, direct computation yields Ex = {3,113,7281,466033,...}. It 
is interesting to observe that the function h(x) - 64x-f 49 generates all of Ex except for x = 3, 
hence motivating our final lemma as well as Theorem 8. 

Lemma 7: Let x G 2N + 1, g(x) = 2x + l, and /i(x) = 64x + 49. Then 7*(g(M(x))) = T2(hk(x)) 
forall&eP. 

Proof: We proceed by induction on £. When £ = 1, some simple computation shows that 
T2(g(hk(x)))^T\hk(x)). 

Assuming the lemma is true for k = j , we show that the lemma holds for k = j +1. Since 

T\g(^l(x))) = T\g(h>(h(x)))) 

and the induction hypothesis gives 
T\g{y{h{x))))=T\y{h(x))), 

we obtain 
T\g{ti+\x))) = T\hJ+\x)). 

Hence, the case where k = j +1 holds true. D 

Theorem 8: Let x GE with x > 5 and let h(x) = 64x + 49. Then a(x) - 2 if and only if x = 
hn(l) for some n G¥. 

Proof: Assume a(x) = 2 and let amn and hmn be defined as in Lemma 6. Using this lemma, 
we see that x-amn or x-bmn for some w , n e P . If we let / (x ) = 4x + l, the relationships 
a/w,«+i = f(am,n) and *TM,/2+I - /(*m,») a r e easily verified. Hence, using the fact that x G E in con-
junction with Lemma 2, we see that x = aml or x = ftwl. Now direct computation shows that 
Kam, i) ~ am+i I f°r all w G P, so a ^ ! = 1 (mod 8). Using Lemma 2 and verifying the case where 
m = 1 independently, we obtain aml G E for all m G P. Now let #(x) = 2x +1. Since 7^(aw?1) = 
T^(hm+l j) and if(<Vi) =^+1,1, we see that hm+ll GE only when m = 0, hence when A^+u =3. 
Since x > 5, we conclude that x = hn(am {) for some m e P and » G N . Using /i(aw x) = am+1! and 
the fact that a u = h(l), the result x = hn(l) for some « e P follows. 

We now show by induction that <j(x) - 2 is a necessary condition for x = hn(l). For w = 1, 
<x(x) = 2 is easily verified. We assume that, for x = hn(l) x = hk(l), we have a(x) = 2, and will 
show that x = hk+l(l) yields a(x) = 2. Direct computation shows that T2(h(x)) = T2(g(x)), thus 
T2(hk+1(x)) = T2(h(hk(x))) = T\g(hk(x))\ Using Lemma 7, we obtain T2(hk+\x)) = T2{hk{x)). 
Finally, setting x = l and invoking the induction hypothesis, we get T2(hk+l(l)) = l; hence, for 
x = hk+l(l), we have a(x) = 2. • 
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Remark: A similar characterization for x e E satisfying <r(x) = ifc when k > 3 would be of inter-
est. In the case where k = 3--numerical computation suggests that x = (/^)"(17) or x = (/^)w(75)? 
where /|(x) = 64x + 49 and h^x) = 32x + 17. Furthermore, if we let Ek = {x eE\a(x) = k}9 it 
can be conjectured that Ek = \Jiil{hl,(xi)\n GN} for some tk e P and Aj = a/x + ̂ .. The behavior 
of tk Ik as £ -» oo also merits further study. 

We now demonstrate that a nontrivial cycle under T will induce a nontrivial cycle under the 
maps t and T (Theorems 9 and 10). Thus, to prove that nontrivial cycles do not exist under T, it 
is sufficient to prove that nontrivial cycles do not exist under either f or T. Let « and ~ be the 
equivalence relations given in Sections 1 and 3, and let J be defined as in Section 2. If we define 
f: 2N +1 -> 2N + by f(x) = X(CT(X)), we have the following lemmas. 

Lemma 8: P(x) = f(T(x)) for all x e 2P +1. 

Proof: Letting y = f(x) and z = T(x), we have j « z, so J(y) « J(z). Therefore, Cr0;) = 
C/(Z), and thus l(CT(y)) = j(Cr(z )). This gives t(y) = f(z), and substituting for j and z gives the 
result. • 

Lemma 9: tk+l(x) = f(Tk(x)) for all it e P and for all x e 2P +1 satisfying a(x) > it. 

Proof: We proceed by induction on k. The case in which k-\ follows from Lemma 8. 
Assume that the lemma holds when k = j . Since 

P'+2(x) = f(P+1(x)) = f(t(P(x))) = P(P(x)) 

and since Lemma 8 gives 

p(p(x)) = f(7(P'(x))) = f(F'+1(x)), 
the case when k = j + l holds true. • 

Theorem 9: If 7*(JC) = x for some £ e P and x e 2N + 1, then there exists y GM satisfying 
t*(y) = y. 

Proof: By Lemma 9, 7*+1(x) = T(Tk(x)), hence invoking the hypothesis of the theorem 
gives P+l(x) = t(x), and setting y = f(x) gives the result. • 

Lemma 10: Let X J G £ with x - j . Then T(x) ~ T(y). 

Proof: If x - j , then x and y are in Gz for some z GE. Hence we can write x = f"1^1 (z) 
and y = f^g3*(z), where nh^GN, Jl3cJ2 e {0,1}, / (x) = 4x +1, and g(x) = 2x +1. Applying 
Lemma 1, we see that T(x) = T(g*i (x)) and T(y) = T&* (x)). TfSx = S2, the result follows, so 
assume, without loss of generality, that Sx = 0 and J2 = 1. This yields T(x) - T(z) and T(y) = 
T(2z +1). If z = 5, the conclusion of the lemma is easily verified, so assume z * 5. Since Z G £ , 
we can combine Lemma 2 with the proof of Theorem 1 to see that T(z) = (3z +1) I2j with j = 1 
or j = 2. (The possibility of j = 4 is eliminated since z±5) Noting that T(2z +1) = 3z + 2, we 
obtain 2JT(z) +1 = J(2z +1). When j = 1, this yields g(T(x)) = T(y), and when j = 2, this yields 
f(T(x)) = J(j/); hence, in either case, T(x) - J ( j ) . D 

Theorem 10: If 7*(x) = x for some k e P, then there exists e e £ satisfying r*(e) = e. 
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Proof: Using Lemma 10, the statements and proofs of Lemmas 8 and 9 hold with f replaced 
by T, Cx replaced by Ex. and « replaced by ~. Hence, the result follows from a proof analogous 
to that of Theorem 9, with T replaced by T and M replaced by E. D 

Finally, we will demonstrate that divergent trajectories under f and T will induce divergent 
trajectories under T. 

Theorem 11: If {fk(x)}^l is divergent, then {Tk(x)}^=l is divergent. 

Proof: By Lemma 9, we obtain fk(x) = T(Tk~l(x)), and by the definition of T, we have 
f(I*-l(x)) = z(CTk(x)). Thus, f*(x) = z(CTkM), and hence fk(x)<Tk(x), from which the 
theorem immediately follows. D 

Theorem 12: If {Tk(x)}%ml is divergent, then {Tk(x)}^=l is divergent. 

Proof: Since Lemma 9 holds with f replaced by J , Theorem 12 follows from a proof analo-
gous to that of Theorem 11, with f replaced by T. D 

Remarks: The results in this paper are primarily geared toward a constructive proof of the 3x + l 
Conjecture by establishing weak connectivity of GM or GE. It is interesting to note that, if x = 1 
(mod 32) and f(x) = 8x + 9, then x and f(x) are weakly connected in GE. Furthermore, if x is in 
E, x = 3 (mod 4), and g(x) = 32x +17, then x and g(x) are weakly connected in GE. Finally, if 
x = 1 (mod 8) and h{x) - 64x + 49, then x and h(x) are weakly connected vertices of GE. These 
results, coupled with Theorems 6 and 7, may be sufficient to establish weak connectivity of GE. 
This appears to be a promising direction for future research. 
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