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In this note, we find all triples consisting of consecutive binomial coefficients

(F) (¢ (472) ®

forming Pythagorean triples. The result is

Theorem: If the three numbers listed at (1) above form a Pythagorean triple, then »= 62 and
k =26 or 34.

We first notice that it is enough to assume that k¥ +2 <n/2. Indeed, if £ >n/2, then one can
use the symmetry of the Pascal triangle to reduce the problem to the previous one, while the case
in which k <n/2 but k+2>n/2 is impossible because these conditions will lead to isosceles
Pythagorean triangles which, as we all know, do not exist.

Proof: After performing the cancellations in the following equation,

(Z)z * (k’i 1)2 = (k Y 2)2’ @)

we get
k+2)2(k+D)2+(n-k)?)=(n-k)*(n-k -1~ 3)
We make the substitution x :=n—k and y:=k+1. Equation (3) becomes
O +D*(? +yH) = xP(x-1)% “

Notice that equation (4) implies that x2 + y? is a square. Let d:= gcd(x, y).
We distinguish two cases:
Case 1.

x=2duv,
{ where gcd(v,v) =1 and # # v (mod 2). )

y=d@ -v?),
Combining formulas (5) and equation (4), we get
(d@® —vH) +1)(? +v?) = 2uv(2duv - 1). ©)
Since ged(u? +v2, 2uv) = 1, it follows from equation (6) that (u? +v2) | (2duv—1). Hence,

2duv-1_du?-v)+1
P 2uv =d, ™

where d| is an integer. One can rewrite the two equations (7) as
{d(2uv) —dP +v) =1,

d(@* —v*)-d,(2uv) = -1. ®)
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One can now regard (8) as a linear system in two unknowns, namely,  and d,. After solving it by
using Kramer's rule, one gets

do_—ut v)?
ut —vt -4y’
=+ v -2uv
ut —vt— 4y

©)

1

Let A =u"—v*—4u*” be the determinant of the coefficient matrix. We now show that A = +1.
Indeed, notice that since u # v (mod 2), it follows that A is odd. Assume that |A| >1 and let p be
an odd prime divisor of A. From the first formula (9) and the fact that d is an integer, we get that
p|(u+v). Since p|A =u* —v* —4u*v? = (u+v)(u - v)(@? +v¥) —4u*? | it follows that p|uv. But
since p|(u +v) also, we get that p|ged(w, v), which is impossible. Hence,

ut —vt =4 = 1. (10)

Notice that equation (10) can be rewritten as (2(u* — 2v?))? — 5(2v?)? = +4. It is well known that
all positive integer solutions of X*—5Y?=+4 are of the form X =1, and ¥ =F, for some
positive integer ¢, where (7)o and (), are the Lucas and the Fibonacci sequence, respec-
tively, givenby L,=2, L,=1, F;=0, FF=l,and L, , =L, ,+L, and F,,=F,,,
tively.” Now equation (11) implies that

F =27
= (12)
L, = £2(u? - 2v%).

+F,, respec-

It is known (see, e.g., [3]) that the only Fibonacci numbers which are twice times a square are
F,=0, F,=2, and F;=8. Hence, for our case, we get #=3, v=1, and 1 =6, v=2, respec-
tively. In the first case, we get #=2. From formula (9), we get d =9, and then from formulas
(5), we get x=36 and y=27. This gives the solution n= 62 and & =26, and by the symmetry
of the Pascal triangle, £ =34 as well. The case =6 and v=2 does not lead to an integer
solution for u.

Case 2.

— g2 2
{x =d(w =V, where ged(u, v) =1 and u# v (mod 2). (13)
y=2duv, _

This case is very similar to the preceding one. With the notations (13), equation (4) becomes

(d@uv) + D)(@? +v2) = (@ - v (d@? —vH) - 1). (14)
Since ged(u® +v?, u?—v?) =1, it follows that (u*+ v3) |(d(u® -v*)~1). Hence, equation (14)
implies that

dQuv)+1 _ d@w* -v) -1
512—12 - (u2+v2) =, (1)

where d| is an integer. One may now rewrite equation (15) as

* I could not find a reference for this fact.
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dQuv) -dy(u* -v*) = -1
@)= dy(u ~v) =1, -
d@? -v)-d@* +v¥) =1
Solving system (16) in terms of d and d, versus # and v, we get
d= 2u®
@ —v®)? = 2uv(? +V?)’
a7
d = 2uv +u? —v?
U@ v = 2uv(u? +vY)
One may again argue as in the preceding case that
@2 =v*)? = 2uv(? +v) = £1. (18)
Rewrite (18) as
(2@* +v* —uv)): - 5Quv)* = +4. (19)
Equation (19) implies that there exists # > 0 such that
FE =2uv, 20)
L, =2@* +v? —uv).
Formulas (20) imply that
Lr;Ff = (u—-v)2. @1)
Using the well-known fact that L, = F, +2F,_, for all # > 1, it follows by formula (21) that
F_=@-v). (22)

It is well known (see [1] or [2]) that the only squares in the Fibonacci sequence are F; =0, F, =1,
E, =1, and F, =144. Hence, by formula (22), we get that £ =1, 2, 3, 13. None of these values
gives integer solutions u, v from the system of equations (20). The Theorem is therefore proved.
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