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1. INTRODUCTION 
The purpose of the present paper is to prove that there are finitely many binomial coefficients 

of the form (f in certain binary recurrences, and give a simple method for the determination of 
these coefficients. We illustrate the method by the Fibonacci, the Lucas, and the Pell sequences. 
First, we transform both of the title equations into two elliptic equations and apply a theorem of 
Mordell [10], [11] to them. (Later, Siegel [16] generalized MofdelTs result, and in 1968 Baker 
[1] gave its effective version.) After showing the finiteness, we use the program package SIMATH 
[15] which is a computer algebra system, especially useful for number theoretic purposes, and is 
able to find all the integer points on the corresponding elliptic curves. The algorithms of SIMATH 
are based on some deep results of Gebel, Petho, and Zimmer [5]. 

Before going into detail, we present a short historical survey. Several authors have investi-
gated the occurrence of special figurate numbers in the second-order linear recurrences. One such 
problem is, for example, to determine which Fibonacci numbers are square. Cohn [2], [3] and 
Wyler [18], applying elementary methods, proved independently that the only square Fibonacci 
numbers are F0 = 0, Fl=F2 = l, and Fl2 = 144. A similar result for the Lucas numbers was 
obtained by Cohn [4]: if Ln = x2, then n-\ or n = 3. London and Finkelstein [6] established Ml 
Fibonacci cubes. Petho [12] gave a new proof of the theorem of London and Finkelstein, apply-
ing the Gel'fond-Baker method and computer investigations. Later Petho found all the fifth-
power Fibonacci numbers [14], and all the perfect powers in the Pell sequence [13]. 

Another special interest was to determine the triangular numbers Tx = x(^+1) in certain recur-
rences. Hoggatt conjectured that there are only five triangular Fibonacci numbers. This problem 
was originally posed in 1963 by Tallman [17] in The Fibonacci Quarterly. In 1989 Mng [8] 
proved Hoggatt's conjecture by showing that the only Fibonacci numbers that are triangular are 
FQ - 0, F'{ = F2 - 1, F4 = 3, F^ - 2 1 , and Fl0 = 55. Ming also proved in [9] that the only triangular 
Lucas numbers are Lx - 1, L2 - 3, and Ll% = 5778. Moreover, the only triangular Pell number is 
Px = 1 (see McDaniel [7]). 

Since the number Tx-\ is equal to the binomial coefficient (2), it is natural to ask whether the 
terms (3) occur in binary recurrences or not. As we will see, the second-order linear recurrences, 
for instance, the Fibonacci, the Lucas, and the Pell sequences have few such terms. 

Now we introduce some notation. Let the sequence {Un}™=0 be defined by the initial terms 
U0, Ul9 and by the recurrence relation 

U„ = AUn_l+BUn_2 (»>2), (1) 

where U0,Ux,A9BeZ with the conditions \U01 + \UX\ > 0 and AB* 0. Moreover, let a and fi. 
be the roots of the polynomial 
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p(x) = x2-Ax-B, (2) 

and we denote the discriminant A2 + 4B of p(x) by D. Suppose D * 0 (i.e., a * J3). Through-
out this paper we also assume that U0 = 0 and U{ = \. 

The sequence 
V„ = AV„_l+BV„_2 (»>2), (3) 

with the initial values V0 = 2 and Vx = A is the associate sequence of U. The recurrences U and V 
satisfy the relation V2 -DU2 = 4{-B)n. 

Finally, it is even assumed that \B\= 1. Then 

V2-DU2 = 4(±lf = ±4. (4) 

As usual, denote by Fn9 Ln, and Pn the w* term of the Fibonacci, the Lucas, and the Pell 
sequences, respectively. 

The following theorems formulate precisely the new results. 

Theorem 1: Both the equations Un = (3) and Vn = (3) have only a finite number of solutions 
(n, x) in the integers n > 0 and x > 3. 

Theorem 2: All the integer solutions of the equation 
(0 F„ = (*)are(H,x) = (l,3)and(2,3), 

(11) 4 = (J) are fax) = (1,3) and (3,4), 
(Hi) P„ = (f)is(»,x) = (l,3). 

2. PROOF OF THEOREM 1 

Let f/and Vbe binary recurrences specified above. We distinguish two cases. 
Case 1. First, we deal with the equation 

Un = {i] (5) 
in the integers n and x. Applying (4) together with y - Vn and xx - x - 1 , we havef/w = (^1) and 

y2-D[^J = ±4. (6) 
Take the 36 times of the equation (6). Let x2 = x\ and yx - 6y, and using these new variables, 
from (6) we get 

y\ = Dx\-2Dx2+Dx2 ± 144. (7) 

Multiplying by 36D2 the equation (7) together with k = 33Dy{ and / = 3D(3x2 - 2), it follows that 

k2 = P-27D2l + (54D3±l04976D2). (8) 

By a theorem of Mordell [10], [11], it is sufficient to show that the polynomial u(l) = l3-
27D2/ + (54D3 + 104976D2) has three distinct roots. Suppose the polynomial u(l) has a multiple 
root I Then f satisfies u'(l) = 3/2-27D2 = 0, i.e., 7=±3D. Since u(3D)= +104976D2, it 
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follows that D = 0, which is impossible. Moreover, u(-3D) = 108D3 ± 104976D2 implies D = 0 
or D = ±972. But £> * 0, and by |2?|= 1 there are no integers A for which D = A2+4B = ±972. 
Consequently, &(/) has three distinct zeros. 

Case 2. The second case consists of the examination of the Diophantine equation 

^ ( 3 ) ( 9 ) 

in the integers n and x. Let y = C/w and xx = x - 1 . Applying the method step by step as above in 
Case 1, it leads to the elliptic equation 

k2=P-21D2UcD\ (10) 
where c = -104922 if n is even and c = 105030 otherwise. The polynomial v(l) = P-27D2l + cD3 

also has three distinct roots because v'(/) = 3/2-27D2, 7*= ±3D, and v(±3D) = 0 implies D = 0. 
Thus, the proof of Theorem 1 is complete. • 

3. PROOF OF THEOREM 2 

The corresponding elliptic curves of equations (8) and (10) are, in short, Weierstrass normal 
form, whence, for a given discriminant £>, the theorem can be solved by SIMATH. 

By (8) and (10), one can compute the coefficients of the elliptic curves in case of the Fibo-
nacci, the Lucas, and the Pell sequences. The calculations are summarized in Table 1, as well as 
all the integer points belonging to them. Every binary recurrence leads to two elliptic equations 
because of the even and odd suffixes. For the Fibonacci and Lucas sequences, D = 5; for the Pell 
sequence and its associate sequence, D = 8. 

TABLE 1 

Equation 

*. = © 

k - © 

k = (D 
k = (3) 

k = © 
k = G) 

Transformed equations 

k2 = / 3 - 6 7 5 / + 2631150 

k2 = I3 - 675/ - 2617650 

k2 = I3 - 675/ - 13115250 

k2 = l3- 675/ + 13128750 

k2 = / 3 - 1728/ + 6746112 

k2 = l3- 1728/ - 6690816 

All the integer solutions (l,k) 
(15,1620), (-30,1620), (5199,374868), 

(735,19980), (150,2430), (-129,756) 
(150,810), (555,12960), (1014,32238), 

(195,2160), (451,9424), (4011,254016) 

no solution 

(375,8100), (-74,3574), (150,4050), 
(-201,2268), (2391,116964) 

(-192,0), (24,2592), (-48,2592), (97,2737) 
(312,6048), (564,13608), (5208,375840) 

(240,2592), (609,14769) 

The last step is to calculate x and y from the solutions (/, k). By the proof of Theorem 1, it 
follows that x = 1 + V(/ + 6Z))/9D, y = kl\ 62D in the case of equation (5), and y = k 1162D2 in 
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the case of the associate sequence. Except for some values x mdy, they are not integers if x > 3. 
The exceptions provide all the solutions of equations (8) and (10). Then the proof of Theorem 2 
is complete. • 

ACKNOWLEDGMENT 

The author is grateful to Professor Petho for his valuable remarks. He would also like to 
thank the anonymous referee for many helpful suggestions that led to a better presentation of this 
paper. 

REFERENCES 

1. A. Baker. "The Diophantine Equation y2 = ax3 +hx2 +cx + d " J. London Math. Soc. 43 
(1968): 1-9. 

2. J. H. E. Cohn. "Square Fibonacci Numbers, etc." The Fibonacci Quarterly 2.2 (1964): 109-
113. 

3. J. H. E. Cohn. "On Square Fibonacci Numbers." J. London Math. Soc. 39 (1964):537-40. 
4. J. H. E. Cohn. "Lucas and Fibonacci Numbers and Some Diophantine Equations." Proc. 

Glasgow Math. Assoc. 7 (1965):24-28. 
5. L. Gebel, A. Petho, & H. G. Zimmer. "Computing Integral Points on Elliptic Curves." Acta 

Arith. 68 (1994): 171-92. 
6. H. London & R. Finkelstein. "On Fibonacci and Lucas Numbers Which Are Perfect Powers." 

The Fibonacci Quarterly 7.5 (1969):476-81, 487. 
7. W. L. McDaniel. "Triangular Numbers in the Pell Sequence." The Fibonacci Quarterly 34.2 

(1996): 105-07. 
8. L. Ming. "On Triangular Fibonacci Numbers." The Fibonacci Quarterly 27.2 (1989):98-

108. 
9. L. Ming. "On Triangular Lucas Numbers." Applications of Fibonacci Numbers 4:231-40. 

Dordrecht: Kluwer, 1991. 
10. L. J. Mordell. "Note on the Integer Solutions of the Equation Ey2 = Ax3+Bx2+Cx + D" 

Messenger Math. 51 (1922): 169-71. 
11. L. J. Mordell. "On the Integer Solutions of the Equation ey2 = ax3 +hx2 +cx + d " Proc. 

LondonMath. Soc. (2) 21 (1923):415-19. 
12. A. Petho. "Full Cubes in the Fibonacci Sequence." Publ Math. Debrecen 30 (1983): 117-27. 
13. A. Petho. "The Pell Sequence Contains Only Trivial Perfect Powers." Colloq. Math. Soc. 

Jdnos Bolyai, 60: Sets, Graphs and Numbers Budapest (Hungary), 1991, pp. 561-68. 
14. A. Petho. "Perfect Powers in Second Order Recurrences." Colloq. Math. Soc. Jdnos Bolyai, 

34: Topics in Classical Number Theory Budapest (Hungary), 1981, pp. 1217-27. 
15. SIMATHManual, Saarbriicken, 1996. 
16. C. L. Siegel (under the pseudonym X). "The Integer Solutions of the Equation y2 = axn + 

bxn~l + •••+*. J. LondonMath Soc.l (1926):66-68. 
17. M. H. Tallman. The Fibonacci Quarterly 1.1 (1963):47. 
18. O. Wyler. "In the Fibonacci Series Fx = 1, F2 = l, Fn+l = Fn+Fn_l the First, Second and 

Twelfth Terms Are Squares." Amer. Math. Monthly 71 (1964):221-22. 
AMS Classification Numbers: 11B37, 11B39 

12 

#•• • • • • ! • 

[FEB. 


