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1. INTRODUCTION

Let a,,...,a,_, (r =2, a,_; #0) be some real or complex numbers. Let {C,},>, be a sequence
of C (or R). Sometimes, for reasons of convenience, we consider {C,},s, under its equivalent
form as a function C:N— C (or R). And when no possible confusion can arise, we write C(n)
rather than C, and, similarly, in case of an indexed family of functions C; :N— C, we use C;(n)
instead of C; ,. Let {I.},>o be the sequence defined by the following nonhomogeneous recur-
rence relation of order 7,

T

n+l = a0];1 +a1];l—l +ee +ar—17;1—r+1 + Cn+1 fOI' nzr- 17 (1)
where 1, ..., T'_, are given initial values (or conditions). In the sequel, we refer to such sequence

{T.},0 as the solution of "recurrence relation (1)." If the function C satisfies

d
C,= Z,BjCj,,,

J=0

for some finite sequence of functions C,, ..., C; :N — C, the solution {7}},, may be expressed as

d
T, = Zﬂ jI_;',n >
=0
where {7} ,},»o is the solution of (1) with C, = C;(n). Solutions of (1) have been studied in the
case in which C equals a polynomial or a factorial polynomial (see, e.g., [1]-[4], [7], [9], [12]).
The purpose of this paper is to study a matrix formulation of (1), which extends those con-
sidered for (1) in [6], [10], and [11], when C(n)=0. This allows us to provide a method for
solving equation (1) for a general C:N— C. Our expression for general solutions of (1) extends
those obtained in [1] for » >2. If the nonhomogeneous part equals a polynomial or a factorial
polynomial, our general solution allows us to recover a well-known particular solution—Asveld's
polynomials and factorial polynomials (see [2], [3], [9]).
This paper is organized as follows. In Section 2 we study an 7 x 7 matrix associated to (1),
in connection with r-generalized Fibonacci sequences. In Section 3 we use a matrix formulation
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with an aim toward solving (1) for arbitrary C:N— C. Section 4 is devoted to the study and
discussion of our general solution in the polynomial and factorial polynomial cases. Section 5
consists of some final remarks.

2. MATRICES ASSOCIATED TO »-GENERALIZED FIBONACCI SEQUENCES

From the r-generalized Fibonacci sequence V,, =aj, +--++a,_V,_,,, for n>0, as studied
by Andrade and Pethe [1], we take r copies, indexed by s (0< s<r—1):

Vid=ad 0+ +a p 9, fornz0. @)

(2|

We provide these r copies with mutually different sets of initial conditions, that is, V_(j-.) =6,

(0<j<r-1,0<s<r-1), where J, ; is the Kronecker symbol. Consider the following r x r

matrix:
4 a a,.,
1 0 0
A=[0 1 0 - 0| 3)
0 - 0 1 0

Expression (3) shows that the columns and arrows of A4 are indexed from 0 to »—1. The usual
matrix indexing form 4 =(q; ;)i<; ;<, of (3) is given as follows: a,; =a;_, for every 1< j<r,
and a;; =0, ;. forevery 2<i<r,1<j<r.
The matrix (3) has been considered for r-generalized Fibonacci sequences in [6], [10], [11].
A straightforward computation allows us to establish that the matrix 4 is related to the r-
generalized Fibonacci sequences (2) as follows.

Proposition 2.1: Let A be the matrix defined by (3). Then, for every n>0, we have

( ls)0<x s<r-1

where
ar=ve. O]

Remark 2.1: Due to the initial conditions V'Y =&, (0< j<r-1, 0<s<r-1), we have indeed
that A° equals the r x r-identity matrix.

3. SOLVING (1) BY MATRIX METHODS

Consider X,=%T,...,T,_,,) and D,=(C,,0,...,0) for n>r—1, where ‘Z denotes the
transpose of Z. We can easily verify that (1) is equivalent to the following matrix equation:

X, ,=4X,+D,,,, n=>r-1, 5)

where 4 is the matrix (3). From (5), we derive that
X,=A""X,_ +) A"D,, nxr. (6)

k=r

Let R,=Y,_ A"*D,. Then we can verify that R,,, = AR, +D,,;. From expressions (4), (5),
and (6), we derive the following result.
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Theorem 3.1: Let {1},., be the solution of (1) whose initial conditions are T, ..., T,

1. Then,
for n>0, we have

r=1

];1 = Z n5r+lT—s—l + ZV(O) (7)

5s=0
Because of (2), the sequence {U,,},», defined by U, = X7, V)

) al s is a solution of the homo-
geneous part of (1). Thus, the sequence {WP} _, where

WP = ZV(")C = —Z ol + T,

5s=0

is a particular solution of (1) that satisfies W?? =0 for n=0,1,...,7 —1. We call {9}, ., the
JSundamental particular solution of (1). Hence, (6) and Theorem 3.1 allow us to formulate the
following result.

Theorem 3.2: Let {T},-, be a solution of (1). Then, for n >0, we have

T, = T WP = T _ ZV(s) T4P9, 4+ T4, (®)

n—-r+14r—s-1
5s=0

where {W P9} ., is the fundamental particular solution of (1), {Z*?} ., is a solution of the
homogeneous part of (1) with initial conditions 7, ..., 7._,, and {IP?} ., is a particular solution
of (1) with initial conditions T3P, ..., T,

Expression (8) extends the one established in [1], with the aid of Binet's formula in the poly-

nomial case.

4. POLYNOMIAL AND FACTORIAL POLYNOMIAL CASES

4.1 Elementary Polynomial Solutions and Asveld's Polynomials

For C(n)=n’ (0< j<d), the fundamental particular solution {W 7"}, ., called the elemen-
tary fundamental particular solution, is
ij’;,‘) =Yg VO fornzr.
q=r
Let {f,},», be the sequence of C*-functions defined on R as follows:
f(x)= Z VO exp(qr). ©)
q=r
For each function f,, the j® derivative is
9@ = X0V exp(py)
pran
Expressions (2) and (9) imply that {£"},,, satisfies the following nonhomogeneous recur-
rence relation of order 7,

ANGE Zafn”(x) +(n+1) expl[(n+1)x]. (10)

108 [MAY



SOLVING NONHOMOGENEOUS RECURRENCE RELATIONS OF ORDER 7 BY MATRIX METHODS

For reasons of simplicity, we suppose that (¥ ”},._.., has simple characteristic roots. Thus,
Binet's formula takes the form V¥ =377} a,27. We have to distinguish the following exhaustive
cases:

1. A, #1foreveryi (0<i<r-1).

2. Thereexistsd (0<d <r-1) suchthat 1, =1.

In the sequel, we suppose (without loss of generality) that 1,=1.
When 4, #1 for all i (0<i <r-1), we consider

r=1

H, ()= g(0)e™ ™, K ,(x)=3 w04, - ay
where -
f9= 3 < v =
Andif A,=1, we set
Go(X) = @Yo, Hy (9)= gy, K, (9)= 3 m(0)2rr™, (12)
where ~ i )

&(x)= z xa,-
i=1€ —

Weset S,(x)=H, ,(x) if ;=1 foralli (0<i<r-1)and §,(x) =G,(x)+ H, (x) if 1,=1.
Because the A,'s are characteristic roots, we have

A

H

r-1

Ky = 2a ki) (p=1.2).

Then, from (10), we derive that for j >0 we have

r=1
SD(x) = Z a SO (x) + (n+1) exp[(n+Dx]. (13)
i=0
As a consequence, we have the following lemma.

Lemma 4.1:

(@) The elementary fundamental particular solution {7}, of (1) is given byW#? = £0(0).
More precisely, we have W29 = H{)(0)+ K{)(0) if A, #1 for all i (0<i <r—1), where H, ,(x)
and K ,(x) are given by (11), and W% = GY(0)+ H)(0)+ KY)(0) if A,=1, where G,(x),
H, (x), and K, ,(x) are given by (12).

(b) For j =0, the sequence {S$’(0)},s¢ is a particular solution of (1) for C(n) =n’.

By Leibnitz's formula, we have

HY (x) = Z {Z( )( ) a ")(x)} we™D* for j>0,

i=0 k=i

where p=1,2. If A,=1is a characteristic root, then we have
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GO =Y P =y 3. (n-pY .
p=r p=0

It is known that X7 _, p = Q;(n), where Q;(n) is a polynomial of degree j+1. Thus, Lemma 4.1
and (13) allow us to derive the following result.
Theorem 4.2: Let {T},>, be a solution of (1) with C(n) =n/. Then the elementary polynomial
solution {F;(n)},5, of (1) is given by F;(n)= §7(0). More precisely, if 4,1 for all i (0<i<
r—1), we have

Py =313 ()% )ev-20\ 14

=313 (5)(7 s, a4

and if A,=1 we have

Jj+l J J .
kY (j-i
P =03 p(n -+ 3 {Z (5)(%)e >(o>}n". (15)
k=0 k=0 i=k

If Ao=1, the polynomial (15) may be written as P,(n) = ag’™'+ 3, v, 1, where vV, are
constants (real or complex numbers).

Theorem 4.2 shows that particular polynomial solutions P;(n) (0< j<d) defined by (14)-
(15) are the well-known Asveld's polynomials studied in [2], [4], [9], and [12]. Our method of
obtaining P;(n) (0< j<d) is different. For their computation, we use the classic result on
3o P’ = Q,(m) and the j" derivative of H, ,(x) (p=1,2) given by (11)-(12). The derivative of
H, (x) (p=1,2) can be derived from the following property.

Proposition 4.3: Let u(x) == with A= 0,1and x #In(2) if 2 > 0. Then we have
T.(e")
u(k)(x) = (eTI_C_}?jm’
where T, = X(X — 1) Z& — (k +1) XT, for k >0.

4.2 Elementary Factorial Polynomial Solutions and Asveld's Polynomials

For C(n) =n", the elementary fundamental particular solution {V'T/jf’jf)}nz 0 18

weo =3 pyO forallnzr.
p=r
Instead of (9), let {f.},, be the sequence of C*-functions on R* = R— {0} defined as follows:

Fi0) = (1Y S V© xkwt, (16)

The g™ (g>0) derivative of &, ,(x)= x 1 (x £0) is hj(.f’,l (x) = (-D(k - j+q)@Px7F*/-a-1,
Hence, the j* derivative of £, is

~ - n - I
D) = Zk(J)Vn(gl)‘x k-1

k=r
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From (2), we derive that {f,},,, defined by (16) satisfies
T = Za AAORICES (17

As in Subsection 4.1, we suppose that {#/{®} . _ ., has simple characteristic roots. We also con-
sider the following two exhaustive cases: (a) A4,#=1 for every i (0<i <r—1); (b) There exists d
(0<d <r-1) suchthat 1, =1. Asin Subsection 4.1, we suppose in the second case that 1,=1.
The case in which 4, =1 for some d # 0 can be derived easily.
When 4, #1 for alli (0<i <r-1), we set
By ()= 810 ,(0), Ky, (x)= 2 (AT, (18)
0<i<r-1

where

r=1

8= L Y - (1)1“ -

i=0

If 1,=1, we set
n r-1
G,()= -V ay) b 1 (x), Hy ,(x)=Z©h; (x), K, ,(x)=Y ()4, (19)
k=r i=1
where
r-1

()= -1y 21 e

Because the A,'s are characteristic roots, we have

r-1

K(x) = Z KD, (x) (p=1,2).
Then from (17) we derive that, for all j >0, we have

590 = T aS900 + @ n0x, 0

=
where §,(x) = H, ,(x) if A;#1 foralli (0<i<r-1) and 8,(x)=G,(x)+H, ,(x) if A,=1.
Therefore, we have the analog of Lemma 4.1 as follows.

Lemma 4.4

(a) The elementary fundamental particular solution {7{#?}, . of (1) is given by W = FO(1).
More precisely, we have W% = H)(1)+ KU)(1) if A, #1 for all i (0<i <r~1), where H, ()
and K ,(x) are given by (18), and W29 =G,(,’)(1)+H§{2,(l)+IC§{Z,(1) if 1,=1, where G, (x),
ﬁz’n(x), and I?Z,n(x) are given by (19).

() For j >0, the sequence {S’(1)},, is a particular solution of (1) for C, =n).

By Leibnitz's formula, we have

J
=2 (§)ee P mie @=1.2
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Thus,
AN =31 (8)gomn=jiyoxmit p=1,2)
k=0

Consider the following "binomial theorem for factorial polynomials," which is designated by
Asveld [3] as Lemma 1:
(x+y)® = zk: ( I’c) PONCEY
i=0

Then we have

7 L (L k\(i j— (ki) |G

Hh =2, (; 1" ( j)(i)géf OG- )4 |1 (p=1,2).
Hence, H »n(D) (P =1,2) is a factorial polynomial. If 1,=1, we have

n-r

GO = ayy, (1-B).
k=0

Next, we establish that GY)(1) is a factorial polynomial.

Lemma 4.5: For j >0, we have

n Jt

1
Zk(f) = Zﬂj k"(k),
k

k=0 =0

where f; , are constants (real or complex numbers).

Proof: Consider Stirling numbers of the first kind s(z, ) and Stirling numbers of the second
kind S(z, ), which are defined by
J i
XD =3"s(t, j)x' and ¥ =) S(z,)x®.
t=0 t=0
By successive applications of the two preceding formulas and the following classic result,

k=0 i=0
we derive that
LS e @
Zk =B,
k=0 g=0

where
41

J
ﬂj,q = Z Zai,ls(t) .])S(qa .]) g
i=q i=0
Now, using Lemma 4.4, we derive the following resuit.

Theorem 4.6: Let {T},-, be a solution of (1) with C(n) =n"). Then the elementary factorial
polynomial solution {P,(n)},,, of (1) is given by P,(n) = §(1). More precisely, if 4, # 1 for all
i (0<i<r-1), we have
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P N P gUB 1)k = %D [0,
m>;i;<>(xgg 1)k - j) )n 1)
And if 1,=1, we have
B =(- l)faoZy, 2943 (Z(—l)"( AERCE ])(k"’)Jn(’) 22)
i=1 \ k=i

where y ; , are constants (real or complex numbers).

The particular factorial polynomial solutions Iﬁj(n) (0< j<d) defined by (21)-(22) are the
well-known Asveld factorial polynomials studied in [4] and [7]. Our method for obtaining ﬁj(n)

(0< j<d) is different from Asveld's. For their computation, we use Lemma 4.5 and the j™
derivative of H, ,(x) (p=1,2) as defined by (18)-(19).

4.3 Polynomial and Factorial Polynomial Solutions for 4,=1 of Multiplicity m >1

Suppose that 4, #1 for all i (0<i<r-1). Then (14) and (21) imply, respectively, that the
Asveld polynomials P;(n) (0< j<d) are of degree j and the Asveld factorial polynomials IN’j(n)
(0<j<d) are of degree j. Meanwhile, for 1,=1, (15) and (22) show that P,(n) and P}(n)
(0< j <d) may be of degree j+1. More generally, an extension of Theorems 4.2 and 4.6 may
be derived by the same method using, respectively,

G=3 3 ag (kYo

i=0 k=r

instead of G,(x) and
G,(x)=(-1 Zao ; Z(n kY 7+
instead of G, (x) of (19). ”
More precisely, we have the following result.

Theorem 4.7: Let {1}, be a solution of (1) and suppose that 4, =1 has multiplicity m>1, and
the other characteristic roots 4,,..., A, (where s =r —m—1) are simple.
(@) For C(n)=n’, the elementary polynomial solution {P, ()}, of (1) is given by

B = va+z{Z@X)yﬂ@}

i=k

where v, , are constants (real or complex numbers) and

S

a;
&(x) = ; Ny

(b) For C(n)=n", the elementary factorial polynomial solution {P,(1)},5, of (1) is given by

B = }:»f nw>+:: {EE(,)(k)~§F“(n}n¢%

i=k

where v , are constants (real or complex numbers) and
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~ —(—1\ s a;
gZ(x) ( 1) i=11_xi .

Theorem 4.7 shows that P;(n) and 13j(n) may be of degree j+m, where m is the multiplicity
of 1,=
4.4 Solutions of (1) for General {C,},.,

In the general situation, polynomial and factorial polynomial solutions of (1) are as follows.
Proposition 4.8: Let {1,},, be a solution of (1) and suppose that the characteristic roots Ay, ...,
A,_, are simple. Then:

(@) For C(n)=X" =0 B 7/, the particular fundamental polynomial solution {P(n)}, of (1) is
given by P(n) = X%, B,8(0). More precisely, P(n) =X, B,P,(n), where P,(n) is given by
(14)if ;%1 foralli (0<i<r-1) and (15)if 1,=1.

(b) For C(n)= Zd_o p jn(f) the particular fundamental factorial polynomial solution {P(1)},s, of
(1) is given by P(n) = X9_o B,5°(1). More precisely, P(n) = Z9., B,P,(n), where P,(n) is given
by 21)if A, #1 foralli (0<i<r-1) and by (22)if 1,=1.

From Lemma 4.1 and Theorem 4.2, we derive that in the polynomial case the elementary fun-
damental particular solutions of (1) are

r-1
WD = B )+ Yy
i=0
if 4, #1 foralli (0<i<r-1), where P;(n) is given by (14) and

ae
-

()=~
And if 1,=1, we have

r=1
Wi = Py(n)+ Z(:)uf”(o)/l’}"“,

i=
where P;(n) is given by (15) above. For C(n) = Z;Lo B, the fundamental particular solution
{WP},150 is given by

d

Wn(pS) = Z ﬂjo(’x:'S)'
j=0

In the same manner, Lemma 4.4 and Theorem 4.6 imply that, for the factorial polynomial case,
elementary fundamental particular solutions are

r=1
7 = B+ 35O
i=0

if A;#1 for alli (0<i <r—1), where P,(n) is given by (21) above, and

)Jax

Y=Y

I

And if A,=1, we have
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r—1
WD = Bm)+ Y 7M™,
i=0
where P, (n) is given by (22) above. For C(n)= Z -0 B; # the fundamental particular solution
{W“”)}"20 of (1) may be expressed as

d
Wn(pS) - Z(:) ,BJWJ(I;S)-
J=

More precisely, Lemmas 4.1 and 4.4, Theorems 4.2 and 4.6, and Proposition 4.8 imply
Proposition 4.9: Let {T},>, be a solution of (1) and suppose that the characteristic roots A,,...,
A,_, are simple. Then

(@) For C(n)=X7, 8,1, the fundamental particular solution {#,*”},,, of (1) is

o558+ | S0 |

J= Jj=0

if A, #1 for alli (0<i<r-1), where

rx

ae
v ==

i

and P;(n) is given by (14). Andif 1,=1, we have
d r-1( d ]
Wer =Y BP0 +Y | SO |2,
=0 i=1 {j=0
where P,(n) is given by (15).
(b) For C(n)=X"_, B, the fundamental particular solution {7}, of (1) is
WP = Z B; P () + Z (Z B )(I)J ArrHl
i=0 \ j=0

if A,#1foralli (0<i<r-1), where

SOy — (T ax’”
N0 =Y T
and }N’j(n) is given by (21). And if 1,=1, we have

73 = Zﬂ Po)+S, (Z ﬂ;‘f’(l)]

i=1 \ j=0
where Fj(n) is given by (22).

5. CONCLUDING REMARKS

Remark 5.1: Relation with Genocchi and Bernoulli Numbers. In the j® derivative of H )
(p=1,2) given by (11)~(12) appears the k™ (0< k < j) derivative of functions #(x) = eﬁiz
u(x) = =%, where 4 <0, then
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_ 1
u(x) = VerPil x+,8 vx+h),
where v=—-%, f=—In(-A), and v(f) = ﬁ The Genocchi numbers G, (n > 0) are defined by
Z G —=v(f)
n=0 !

(see [5] and [8]). So, because G, =0, we have

_ I, p) nt -n | X"
u(x) = 2 T n_o(z(n k)l(1k+1)ﬂk ]%

n—O k=

Particularly, for A = -1, we have

n

) =53 Gy X

n—O
If 1,=1 is a simple characteristic root, we may take, for any x #0, G,(x) = ah,(x)w(x),
where A,(x) = —e(—"l'i)—'—‘i and w(x) = -%=. Expansion series of these two functions are

+o0 +o0 k
_ n—r+1) _Jg_ _ x°
hn(x)—lé) k+1 k|2 w(x)_kz;)Bk k'a

where B, are the Bernoulli numbers (see, e.g., [S] and [8]). Then Leibnitz's formula

GO(x) = a Z( ) D)
implies that

=i

G®(0) = az( )gn r+12

Hence, Asveld's polynomials P,(n) (0<j<d) depend on the Genocchi and Bernoulli numbers
when A <0 or 1,=1.

Remark 5.2: Degree of Py(n) and P}(n). Theorems 4.2, 4.6, and 4.7 show that Asveld's
polynomials P;(n) and factorial polynomials 13j(n) (0< j <d) are of degree j+m, where m is the
multiplicity of 1,=1. This property is established by the two last authors using an alternative
method for solving (1), which is the subject of another paper.

Remark 5.3: The Case of Multiplicities > 1. In Section 4 we considered that the characteristic
roots are simple except for Theorem 4.7, where A,=1 is supposed of multiplicity m >1. The
problem is to derive the particular polynomial or factorial polynomial solutions of (1) using the
method of Section 3 when the characteristic roots A,,..., 4, (p <r—1) are of arbitrary multipli-
cities my, ..., m,.
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