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1. INTRODUCTION 

Let a0,...,ar-1 (r > 2, ar_x * 0) be some real or complex numbers. Let {Cn}n>0 be a sequence 
of C (or R). Sometimes, for reasons of convenience, we consider {C„}w>0 under its equivalent 
form as a function C: N -> C (or R). And when no possible confusion can arise, we write C(n) 
rather than Cn and, similarly, in case of an indexed family of functions Cj :N->C, we use Cj(n) 
instead of CJ9„. Let {^}„>0 be the sequence defined by the following nonhomogeneous recur-
rence relation of order r, 

^ + i = ^ + ^ - i + - - '+^- i^ r + i + Q+i f o r w ^ r - 1 , (1) 
where TQ,..., Tr_x are given initial values (or conditions). In the sequel, we refer to such sequence 
{Tn}n^0 as the solution of "recurrence relation (I).81 If the function C satisfies 

for some finite sequence of functions C0,...,Q :N->C, the solution {Tn}n>0 may be expressed as 

j=0 

where {Tjn}n>Q is the solution of (1) with C„ = Cj(ri). Solutions of (1) have been studied in the 
case in which C equals a polynomial or a factorial polynomial (see, e.g., [l]-[4], [7], [9], [12]). 

The purpose of this paper is to study a matrix formulation of (1), which extends those con-
sidered for (1) in [6], [10], and [11], when C(n) = 0. This allows us to provide a method for 
solving equation (1) for a general C: N -> C. Our expression for general solutions of (1) extends 
those obtained in [1] for r> 2. If the nonhomogeneous part equals a polynomial or a factorial 
polynomial, our general solution allows us to recover a well-known particular solution—Asveld's 
polynomials and factorial polynomials (see [2], [3], [9]). 

This paper is organized as follows. In Section 2 we study a n r x r matrix associated to (1), 
in connection with r-generalized Fibonacci sequences. In Section 3 we use a matrix formulation 
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with an aim toward solving (1) for arbitrary C:N->C. Section 4 is devoted to the study and 
discussion of our general solution in the polynomial and factorial polynomial cases. Section 5 
consists of some final remarks. 

2. MATMCES ASSOCIATED TO ^GENERALIZED FIBONACCI SEQUENCES 
From the ^-generalized Fibonacci sequence Vn+l = a^n + ••• +ar_yn_r+x for n>0, as studied 

by Andrade and Pethe [I], we take r copies, indexed by s (0 < s < r -1): 

Vtt=a<rts) + -+ar-y£+l for«>0. (2) 

We provide these r copies with mutually difFerent sets of initial conditions, that is, Vlf = Ssj 

(0< j<r-1, 0 < s < r - 1 ) , where Ssj is the Kronecker symbol. Consider the following r xr 
matrix: 

1 0 • • • 0 
0 1 0 ••• 0 

v 0 ••• 0 1 0 

(3) 

Expression (3) shows that the columns and arrows of A are indexed from 0 to r-1. The usual 
matrix indexing form A = (aij)l<i)J<r of (3) is given as follows: aXj =aj_t for every 1< j<r, 
and atJ = SUi_x for every 2 < i < r, 1 < j < r. 

The matrix (3) has been considered for r-generalized Fibonacci sequences in [6], [10], [11]. 
A straightforward computation allows us to establish that the matrix A is related to the r-

generalized Fibonacci sequences (2) as follows. 

Proposition 2.1: Let A be the matrix defined by (3). Then? for every n > 0? we have 

A ={@js)o<ifS<r-l 

where 
<=V&. (4) 

Remark 2.1: Due to the initial conditions Vlf -Ssj (0 < j < r -1, 0 < s < r -1), we have indeed 
that A0 equals the r x r -identity matrix. 

3. SOLVING (1) BY MATRIX METHODS 
Consider Xn = \Tn,..., T„_r+l) and /)„ ='(C„,0,...,0) for « > r - l , where fZ denotes the 

transpose of Z. We can easily verify that (1) is equivalent to the following matrix equation: 
X„+l = AX„ + Dn+l, n>r-\, (5) 

where A is the matrix (3). From (5), we derive that 

X„ = A"-r+%_1 + f,A"-kDk, n>r. (6) 

Let R,, = EJU An'kDk. Then we can verify that i^+1 = AR„ +Dn+l. From expressions (4), (5), 
and (6), we derive the following result. 
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Theorem 3.1: Let {^}„>0 be the solution of (1) whose initial conditions are T0,..., Tr_v Then, 
for n > 0, we have 

T„ = f / ^ T ^ + ±V„^kCk. (7) 
s=Q k=r 

Because of (2), the sequence {UJn>0 defined by U„ = E£j V^r+lTr_s_x is a solution of the homo-
geneous part of (1). Thus, the sequence {W£ps)}n>0, where 

K(PS)=imck=-ix^-,-1+T„ 
is a particular solution of (1) that satisfies W^ps) = 0 for n = 0,1,..., r -1. We call {W<ps)}n>0 the 
fundamental particular solution of (1). Hence, (6) and Theorem 3.1 allow us to formulate the 
following result. 

Theorem 3.2: Let {Tn}n>0 be a solution of (1). Then, for n > 0, we have 

T„ = J<hs> + W™ = #fa> - § ^ i t f f t + 3^>, (8) 
s=Q 

where {^</75>}w^0 *s the fundamental particular solution of (1), {Tf;hs)}n>Q is a solution of the 
homogeneous part of (1) with initial conditions TQ,..., Tr_l9 and {1^ps)}n>o is a particular solution 
of (1) with initial conditions J$ps\..., 7<%\ 

Expression (8) extends the one established in [1], with the aid of Binet's formula in the poly-
nomial case. 

4* POLYNOMIAL AND FACTORIAL POLYNOMIAL CASES 

4.1 Elementary Polynomial Solutions and Asveld's Polynomials 

For C(n) ~nj (0 < j < d), the fundamental particular solution {Wfffl^o, called the elemen-
tary fundamental particular solution, Is 

Wtf> = £q'VW for»>r. 
q=r 

Let {fn}n>r be the sequence of C°°-functions defined on R as follows: 

/,W = Z^exp(^) . (9) 
q=r 

For each function fn9 the j * derivative is 

q=r 

Expressions (2) and (9) imply that {f„j)}n>r satisfies the following nonhomogeneous recur-
rence relation of order r, 

/ ^ « = Z « , / ^ ? W + (" + iyexp[(» + l)x]. (10) 
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For reasons of simplicity, we suppose that {^(0)}^>_r+1 has simple characteristic roots. Thus, 
Binetfs formula takes the form Vn

(0) = S^ 1 atX\. We have to distinguish the following exhaustive 
cases: 

1. Xt *1 for every i (0<i < r - l ) . 
2. There exists d (0<d<r-l) such that Xd = l. 

In the sequel, we suppose (without loss of generality) that XQ = 1. 
When Xt & 1 for all i (0 < i < r -1), we consider 

Hlfi(x) = gl(x)e^\ Khn(x) = l > < x ) A r + \ ' (11) 
i=0 

where 

And If X0 = 1, we set 

G„(x) = a 0 I ^ , # 2 » = & ( x ^ » * , ^2j„(x) = 2 v , ( x H r + 1 , (12) 
p=r j'=l 

where 

i=le -Aj 

We set S^x) = # u ( x ) if Xt *1 for alii ( 0 < i < r - l ) and Sn(x) = Gn(x) + H2fn(x) if A0 = l. 
Because the X/s are characteristic roots, we have 

4!»+iW = I«^V,W(^ = l2). 
i=0 

Then, from (10), we derive that for j > 0 we have 

<S#i(*) = Z r f K ^ ) + (« + l);' exp[(/i + l)x]. (13) 
i=0 

As a consequence, we have the following lemma. 

Lemma 4.1: 
(a) The elementary fundamental particular solution {Wffi}n>0 of (1) Is given byWffi = /„(/)(0). 
More precisely, we have Wffi = H$(0) + K$(0) if Xt * 1 for all i (0 < i < r -1), where J ^ „(x) 
and ^ „ ( x ) are given by (11), and W$ = GiJ\0) + H^l(0) + K^n(0) If A0 = l, where G„(x), 
H2>n(x), and A ^ x ) a r e given by (12). 
(S) For j > 0, the sequence { ^ ( O ) } ^ Is a particular solution of (1) for C(n) = nj. 

By Leibnitz's formula, we have 

*#(*)=I { tCXi^W^^ for J * °> 
where p = 1,2. If X0 = 1 Is a characteristic root, then we have 
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Gy)(o)=a02y=«oi>-/>y-
p=r p=0 

It is known that Z£=0 pJ = Qj(ri), where Qj(n) is a polynomial of degree j +1. Thus, Lemma 4.1 
and (13) allow us to derive the following result. 

Theorem 4.2: Let {Tn}n>0 be a solution of (1) with C(n) = nj. Then the elementary polynomial 
solution {Pj(n)}n>0 of (1) is given by Pj{n) = SJ

n{0). More precisely, if Xt & 1 for all i (0<i < 
r-l), we have 

.1; 
and if XQ = 1 we have 

w=£{£C)(*K'><°>}»<. o«) 

/>(») = «„£ ft(«-r)» + £ j £ QY*W-'>(0)W. <1S> 

If A0 = 1, the polynomial (15) may be written as Pj(n) = a$iJ*1 + E^=o vj,knk> where v^^ are 
constants (real or complex numbers). 

Theorem 4.2 shows that particular polynomial solutions Pj(n) (0<j<d) defined by (14)-
(15) are the well-known Asveld's polynomials studied in [2], [4], [9], and [12]. Our method of 
obtaining Pj(ri) (0<j<d) is different. For their computation, we use the classic result on 
%%oPJ = Qj(p) and the j * derivative ofHpn(x) (p = l, 2) given by (11)-(12). The derivative of 
Hpn{x) (p = 1,2) can be derived from the following property. 

Proposition 43: Let u(x) = -~^ with X & 0,1 and x * ln(A) if X > 0. Then we have 

U{k\x): 
(ex-X) &+i> 

where Tk+l = X(X-X)%*—(k + l)XTk for & > 0. 

4,2 Elementary Factorial Polynomial Solutions and Asveld's Polynomials 

For C(n) = w^, the elementary fundamental particular solution {Wffi}n>0 is 

^Pn) = TPU)Vn-p for all ^i>r. 
p=r 

Instead of (9), let {fn}n>r be the sequence-of C^-functions on R* = R - {0} defined as follows: 

7-W = H)/Z^*"*+/"1- (16> 
The q* ( f>0) derivative of hJwk(x) = x-k+J'1 (x*0) is ^ ( x ) = (- l ) 9 (*-y + ̂ )to)Jc-*+^-1. 
Hence, the j ^ derivative of fn is 

7o)(x)=x*0)^^_1-
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From (2), we derive that {/Jn>r defined by (16) satisfies 

/ $ ( * ) = %/$(*) + (P + 1)°V"-2. (17) 
1=0 

As in Subsection 4.1, we suppose that {V^}n>_r+l has simple characteristic roots. We also con-
sider the following two exhaustive cases: (a) At*\ for every i (0<i < r - 1 ) ; (b) There exists d 
(0 < d < r -1) such that Xd = 1. As in Subsection 4.1, we suppose in the second case that 2 0 = 1. 
The case in which Xd = l for some d*0 can be derived easily. 

When A1 * 1 for all i (0<i < r - l ) , we set 

HUx) = U^Kni^Kn^)= S^(^r+1
? (18) 

0 < f < r - l 

where 

IfA0 = l, weset 

Gn(x) = ( - i y a 0 X \ f c W , #2,„(*) = &(*)>>„„(*)> ^ . » W = 2 ^ ( * ) ^ T r r t , (19) 
fc=r i=l 

where 

Because the 1/s are characteristic roots, we have 

j=0 

Then from (17) we derive that, for all j > 0, we have 

^ l W = Z^)W+(»+i)0 )^""2, (20) 
i=0 

where Sn(x) = Hln(x) if Xt * 1 for all i (0<i < r - l ) and ^(x) = Gw(x) + J f ^ x ) if A0 = 1. 

Therefore, we have the analog of Lemma 4.1 as follows. 
Lemma 4.4 
(a) The elementary fundamental particular solution {WJ^}}n>Q of (1) is given by Wffi = f£J)(i). 
More precisely, we have jf$£> = B$(l)+K$(l) if Xt * 1 for all i (0 < i < r -1) , where BUn(x) 
and ^ ( x ) are given by (18), and ^ > = C^(l) + i ^ ( l ) + ̂ i ( l ) if A0 = l, where 4 ( x ) , 
32n(x)9 and ^ „ ( x ) are given by (19). 

(b) For j > 0, the sequence { ^ ( l ) } ^ is a particular solution of (1) for Cn = nu\ 

By Leibnitz's formula, we have 
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Thus, 

£=o V-// 

Consider the following "binomial theorem for factorial polynomials," which is designated by 
Asveld [3] as Lemma 1: 

1=0 V J 

Then we have 

/=o v*=i V-//V / y 

Hence, H (I) (p = 1,2) is a factorial polynomial. If 2 0 = 1, we have 

e^(i)=ao2>-*)w. 

Next, we establish that Gjj/\l) is a factorial polynomial. 

Lemma 4.5: For j > 0, we have 

£=0 &=0 

where /J^ ̂  are constants (real or complex numbers). 

Proof: Consider Stirling numbers of the first kind s(t, j) and Stirling numbers of the second 
kind S(t9 j), which are defined by 

x(J) = £ s(t, j)x> and yf = £ S(t, i)x(f>. 
?=0 t=Q 

By successive applications of the two preceding formulas and the following classic result, 
n t+l 

k=Q i = 0 

we derive that 

where 

Now, using Lemma 4.4, we derive the following result. 

Theorem 4.6: Let {TJn>0 be a solution of (1) with C{n) = rfj). Then the elementary factorial 
polynomial solution { -̂(̂ )}«>o of (1) is given by Pj(n) = S^J\l). More precisely, if Xt * 1 for all 
i (0 < i < r -1), we have 
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PM) = t ft(-D* {^{i)^-k)(lXk-j)fk-Arfi\ (21) 
And if X0 - 1, we have 

it1 _L fj_ fu\fi\ \ 
rff>, (22) pjin)=(-iy«„trj.*fl»+1 t (-*)* R)fn^^ax^-7)(A-'> 

£=0 /=! \k=i W V / J 

where y f̂Jk are constants (real or complex numbers). 

The particular factorial polynomial solutions Pj(n) (0<j<d) defined by (21)-(22) are the 
well-known Asveld factorial polynomials studied in [4] and [7]. Our method for obtaining Pj(n) 
(0<j<ct) is different from Asveld!s. For their computation, we use Lemma 4.5 and the j * 
derivative ofHniP(x) (p = 1,2) as defined by (18)-(19). 

4*3 Polynomial and Factorial Polynomial Solutions for 2 0 = 1 of Multiplicity m > 1 
Suppose that Xt * 1 for all i (0 < i < r -1). Then (14) and (21) imply, respectively, that the 

Asveld polynomials Pj(n) (0<j<d) are of degree j and the Asveld factorial polynomials Pj(n) 
(0<j<d) are of degree/ Meanwhile, for 2 0 = 1, (15) and (22) show that Pj(n) and Pj(n) 
(0 < j < d) may be of degree j +1. More generally, an extension of Theorems 4.2 and 4.6 may 
be derived by the same method using, respectively, 

m-\ n 

1=0 k=r 

instead of G„(x) and 
m-\ n 

GM=c-iy l>0,,- l>-*)'*~*+y_1 
1=0 k=r 

instead of Gn(x) of (19). 
More precisely, we have the following result. 

Theorem 4.7: Let {^}„>0 be a solution of (1) and suppose that X0 = 1 has multiplicity m > 1, and 
the other characteristic roots Xh..., Xs (where s = r-m-l)m-Q simple. 
(a) For C(n) = nJ, the elementary polynomial solution {Pj(n)}n>0 of (1) is given by 

w = f x x + 1 { t Q)(/)̂ -°(o)}"fc
5 

where v,-^ are constants (real or complex numbers) and 

(Jj For C(w) = w^, the elementary factorial polynomial solution {Pj{n))n>® of (1) is given by 

where v ^ are constants (real or complex numbers) and 
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Theorem 4.7 shows that Pj(n) and Pf(n) may be of degree j+m, where m is the multiplicity 
of XQ = l. 

4.4 Solutions of (1) for General {Cn}n>Q 

In the general situation, polynomial and factorial polynomial solutions of (1) are as follows. 

Proposition 4.8: Let {Tn}n>0 be a solution of (1) and suppose that the characteristic roots A0,..., 
Xr_x are simple. Then: 
(a) For C(n) = T,%oJ3jnJ, the particular fundamental polynomial solution {P(n)}n>0 of (1) is 
given by P(n) = HJ=QfiJSJJ

J\G). More precisely, P(ri) = ^.dJ=0fijPj(n)9 where /^(w) is given by 
(14) if Xt * 1 for all i (0<i < r - l ) and (15) if A0 = 1. 
(&j For C(??) = EyLo/ty^* the particular fundamental factorial polynomial solution {P(^)}w>0 of 
(1) is given by P(n) = 2 ^ 0 ^ w

0 ) ( l ) . More precisely, P(fi) = T% fi).Pj(n), where P;(/i) is given 
by (21) if A, * 1 for all i (0<i < r - l ) and by (22) if A0 = 1. 

From Lemma 4.1 and Theorem 4.2, we derive that in the polynomial case the elementary fun-
damental particular solutions of (1) are 

n-r+l 

if Xi ^ 1 for all i (0 < i < r -1), where Pj(n) is given by (14) and 

And if XQ = 1, we have 
r - l 

wtf> = pJ(ri)+Z'4J)(o)xrr+1, 
/=o 

where i^(ia) is given by (15) above. For C(??) = ZjLo/fy^ ^ e fundamental particular solution 
R</?5>L>oisgivenby 

/=o 

In the same manner, Lemma 4.4 and Theorem 4.6 imply that, for the factorial polynomial case, 
elementary fundamental particular solutions are 

1=0 

if Xf & 1 for all i (0 < i < r -1), where ^(w) is given by (21) above, and 

• axJ~r 

And if A0 = 1, we have 
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j^=i ,»+I^(i)Ar+ i , 
/=o 

where Pj(n) is given by (22) above. For C(n) = H%0fijnu\ the fundamental particular solution 
{W£p^}„zo of (1) may be expressed as 

,=0 

More precisely, Lemmas 4.1 and 4.4, Theorems 4.2 and 4.6, and Proposition 4.8 imply 

Proposition 43: Let {Tn}n>0 be a solution of (1) and suppose that the characteristic roots A0,..., 
Xr_l are simple. Then 
(a) For C(n) = Yf^Pp3, the fiindamental particular solution {W£ps}}n>0 of (1) is 

Wn
{ps) = £fijPj<P) + I, I i ^ / } ( 0 ) W 

y=o 

if 2,- * 1 for all i (0 < i < r -1), where 

/=0 V;=0 

w-r+1 

and Pjifi) is given by (14). And if A0 = 1, we have 

r - l / d 

w„w = I^ y (» )+I I>,*f }(o) 
y=0 i=l V/=0 

^r+l, 
where Pj(ri) is given by (15). 
(b) For C(») = 2^=0 Pfffi, the fundamental particular solution {WJ;ps)}n>Q of (1) is 

r - l f d 

/=o 1=0 y = o 

nn-r+l 

if A, * 1 for all i (0<i < r - l ) , where 
a,-x-Vt{x) = (rV:? 

•J-r 

XtX-1 

and ^-(w) is given by (21). And if 2 0 = 1, we have 

r - l / d 

J=Q M ^ = 0 

where J^(/i) is given by (22). 

i r + i ? 

5* CONCLUDING REMARKS 

Remark 5.1: Relation with Genocchi and Bernoulli Numbers. In the 7th derivative of Hp^n{x) 
(p = 1,2) given by (11)-(12) appears the k^ (0<k< j) derivative of functions ut{x) = - j ^ - . Let 
M{X) = -^j—, where 1 < 0, then 
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where v = —f, p - -ln(-A), and v{i) = -^. The Genocchi numbers Gn (n > 0) are defined by 

(see [5] and [8]). So, because G0 = 0, we have 

a M . l y G {x+fiT-iflf G„+i r>k-n * _ 

Particularly, for A = - 1 , we have 
1 T\ ^ X" 

2«„tS~"+1»!' 
If 2 0 = 1 is a simple characteristic root, we may take, for any x & 0, Gw(x) = ao/iw(x)w(x), 

where hn(x) = g" r* *-1 and w(x) = -~^. Expansion series of these two functions are 

U( v ^ ( / i - r + 1)* xk , . x^r, xk 

where Bk are the Bernoulli numbers (see, e.g., [5] and [8]). Then Leibnitz's formula 

G«\x) = aMi
l\h<tUk-i\x) 

implies that 

Hence, Asveld's polynomials Pj(n) (0<j<d) depend on the Genocchi and Bernoulli numbers 
when X< 0 or A0 = l. 

Remark 5.2: Degree of Pj(n) and Pj(n). Theorems 4.2, 4.6, and 4.7 show that Asveld's 
polynomials Pj(n) and factorial polynomials Pj(ri) (0<j<d) are of degree j+m, where m is the 
multiplicity of A0 = 1. This property is established by the two last authors using an alternative 
method for solving (1), which is the subject of another paper. 

Remark 53: The Case of Multiplicities > 1. In Section 4 we considered that the characteristic 
roots are simple except for Theorem 4.7, where A0 = l is supposed of multiplicity m>\. The 
problem is to derive the particular polynomial or factorial polynomial solutions of (1) using the 
method of Section 3 when the characteristic roots A0,...,Ap (p<r-l) are of arbitrary multipli-
cities nt0,...,mp. 
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