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1. INTRODUCTION 

Recently, It was asked by Paul Bruckman [1] to show that the sum 

evaluates to n2(2£) for r = 3. In the published solution [16], It was also noted that Sx{n) = n(2£), 
and, as a consequence, It was conjectured that S2r+i(n) equals the product of (2„w) and a monk 
polynomial of degree r +1. 

We show this conjecture to be true, albeit with the modification of discarding the adjec-tival 
modifier fSmonicH. In fact, we show that S2r+l(n) = Pr(n)n(2£) and S2r(n) = Qr(n)22n~r\ where 
Pr(n) and Qr(n) are both polynomials of degree r with Integer coefficients. We then Investigate 
the relationship of these polynomials to the Dumont-Foata polynomials [6]. These are gener-
alizations of the Gandhi polynomials, which find their origin in a representation of the Genocchi 
numbers, first conjectured by Gandhi [9]. Finally, we show that the sums Sr{n) are essentially the 
moments of a random variate, measuring the absolute distance to the origin in a symmetric 
Bernoulli random walk, after In time steps. 

2* DERIVATION 

We note that the sum can be rewritten as 

w>-*±[2ky-[fy~ 
£=0 

with 5r0 the Kronecker delta. Now consider, for r > 1, 

r?Sr{ri)-Sr+2{ri) = J H ^ W ~k2) = ^{In-ljH^^k', 

leading directly to the recursion 
^r+2(«) = n \ (n) - 2n(2n - l)Sr(n -1) • (2) 

For r = 0, the derivation Is slightly more elaborate because we need to keep track of the addi-
tional term, but leads to the same recursion so that (2) Is valid for all nonnegatlve integers r. To 
start the recursion, we find the value S0(n) = 22n by an application of the binomial theorem to (1). 
The value of S^n) Is easily obtained by breaking up the summand k to create two sums: 

w-t(.?*)K»+*)-«-*)]-»-f(2,-"*,)-*'2(.?;-li) 
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and one sees that, after changing the range of summation of the second sum to start at k - 1, all 
terms cancel out, with the exception of the summand 2n(2n~l). Rearranging terms gives the 
desired Sl(n) = n(2

n
n). 

It is now clear that the structure of the sum depends upon the parity of r. Starting with the 
odd values, we simplify the recursion (2) by the substitution S2r+l(ri) - Pr(n)n(2") to give 

Pr+1(/i) = « 2 [ P » -Pr(n-1)]+nPr(n -1), (3) 

with initial condition P0(n) = 1. An inductive argument now shows that Pr(n) is a polynomial of 
degree r with integer coefficients, and proves the modified conjecture. It is not difficult to show 
that r! is the leading coefficient of Pr(ri), and, hence, that these polynomials are not raonic. In 
fact, the only cases for which the leading coefficient is 1 are r - 0 and r = 1. The first few 
polynomials are now easily determined as: 

Pl(n) = n, 
P2(M) = (2M-1)M, 
P3(M) = (6M2-8M+3)M, 
P4(n) = (24M3 - 60M2 + 54M -1 7)M, 
P5(n) = (120M4 - 480«3 + 762M2 - 556M + 155)M. 

For the even sums, we substitute S2r(ri) = Qr(ri)22"~r to give the recursion 

£>+1(») = 2M2[& ( M ) - & (M- 1 ) ] + M 0 > - 1), (4) 

with initial condition Q)(w) = 1. This shows that Q.(n) is a polynomial of degree r with integer 
coefficients. It is not difficult to establish that the leading coefficient is given by (2r -1) • (2r - 3) • 

•3-1 = (2r)!/(2rr!) and, hence, that these polynomials are also not monic. Applying the recur-
sion gives the first few polynomials as 

ft(w) = l, 
&<") = ", 
ft(w) = (3w-l>t, 
Q3(n) = (l5n2~l5n + 4)n, 
Q4(n) = (l05n3-2lQn2+l47n-34)n, 
Q5(n) = (945w4 -3150^i3 +4095w2 ~2370/I + 496)R 

It is worth noting that, by evaluating Sr(n) for particular values of w, one can derive various 
properties of [the coefficients of] the polynomials Pr(n) and Q.(ri). For instance, it is not difficult 
to show that the coefficients of Pr(n) sum to unity, and those of Q.(ri) to 2r_1 (for r > 1) by 
evaluating the sums for n = 1. Indeed, one can derive the closed form solutions for S2r(n) a n^ 
S2r+l(n) by solving a system of linear equations in r unknowns, representing the coefficients of the 
corresponding polynomial. 

In the constant of the polynomials Pr(n)/n, one recognizes the Genocchi numbers (see [4], 
[10]) named after the Italian mathematician Angelo Genocchi (1817-1889): 

G2 = - l , G4 = \ G6 = -3 , G8 = 17, G10 = -155, G12 =2073,.... 
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These numbers are defined through the exponential generating function 

and are related to the Bernoulli numbers by G2r = 2(l-22r)B2r. The Genocchi numbers are listed 
as sequence A001469 in the on-line version of the encyclopedia of integer sequences [15], where 
additional references may be found. The constant of the polynomials Qr{n)ln matches the first 
terms of the sequence A002105 in [15], and is related to the tangent numbers. The connection to 
the Genocchi numbers will be explored further in the next section, where the polynomials Pr(n) 
and Qr(n) are found to be related to special cases of the Dumont-Foata polynomials. 

Another matter of interest is the leading coefficient of the polynomials, characterizing the 
behavior of the sums Sr(n) for large values of n. For the even-indexed sums, this is easily estab-
lished as 

^(*)~f^22V, (5) 
and for the odd-indexed sums we can use Stirling's formula to give (2WW) ~ 22n /Jim, so that 

- W * ) ~ - T = 2 2 V + * . (6) 

In these expressions, one recognizes the moments of a central chi-distribution (see, for instance, 
[12], pp. 420-21). That this is no coincidence will be shown in Section 4, where we establish the 
connec-tion between the sums Sr(n) and the distance to the origin in a symmetric Bernoulli 
random walk. 

3. DUMONT-FOATA POLYNOMIALS 

In this section we show that the polynomials Pr(n) and Q.(ri) are related to special cases of 
the Dumont-Foata polynomials [6]. These are defined recursively by means of 

v̂+i(*> y>z) = (x+*)(y+z)Fr(x> y*z+1) - *2^v(*> y>z) > (7) 
with initial condition Fx(x9 y, z) = 1. Explicit expressions for these polynomials and their gener-
ating functions have been derived by Carlitz [3], but are too lengthy to display here. 

The Dumont-Foata polynomials can be regarded as generalizations of the Gandhi polynomials 
(see, for instance [5], [17]), which are defined by the recursion 

Fr+l(z) = (z + lfFr(z +1) - z2Fr(zl (8) 
with initial condition Fx(z) = 1. The coefficients of the first few of these polynomials are shown in 
Table 1, and can also be found in sequence A036970 in [15]. The Gandhi polynomials arose from 
a conjecture by Gandhi [9] concerning a representation of the Genocchi numbers. Gandhi8s 
conjec-ture that Fr(0) = (~l)rG2r was proved by Carlitz [2] and also by Riordan and Stein [14]. 
Another polynomial that can be derived as a special case of the Dumont-Foata polynomials is 
obtained by the recursion 

Fr+l(z) = (2z + l)(z + l)Fr(z +1) - 2z2Fr(z), (9) 

with initial condition Fx(z) = 1. The coefficients of the first few of these polynomials are given in 
Table 2. Comparing these and the coefficients of the Gandhi polynomials to the coefficients of 
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the polynomials Pr(ri) and din), the connection to the Dumont-Foata polynomials becomes 
evident. By substitution in (3) and (4), it is easily verified that 

Pr(n) = (-iy-lnFr(l,\-n) and Qr(n) = (~2y-lnFr(H-n), 

for r > 1. The occurrence of the Genocchi numbers in the expressions for Pr{ri) is seen to be a 
direct consequence of Gandhi's conjecture: Pr

f(0) = (-l)r~lFr(P) = ~G2r. The occurrence of the 
Genocchi numbers in the expressions for Q.(n) is conjectured by the present author, in the form 
Fr(0) = (~2)rG2r / (2r), where Fr(z) are the polynomials defined by (9). 

TABLE 1. Coefficients of the Gandhi Polynomials, Arranged in Triangular Form 

720 

40320 

120 

4200 

139440 

24 

480 

10248 

263040 

6 

60 

762 

12840 

282078 

2 

8 

54 

556 

8146 

161424 

1 

1 

3 

17 

155 

2073 

38227 5040 

40320 423360 1965600 5170800 8240952 7886580 4163438 929569 

TABLE 2. Coefficients of the Polynomials Fr(z)9 Arranged in Triangular Form 

10395 

945945 

945 

51975 

2837835 

105 

3150 

107415 

4579575 

15 

210 

4095 

111705 

4114110 

3 

15 

147 

2370 

56958 

1911000 

1 

1 

4 

34 

496 

11056 

349504 135135 

2027025 18918900 77567490 178378200 244909665 197722980 85389132 14873104 

4. SYMMETRIC BERNOULLI RANDOM WALKS 

In a symmetric Bernoulli random walk, one considers the movements of a particle starting at 
time t = 0 at the origin. Its movements are determined by a chance mechanism, where a fair coin 
is flipped and the particle is moved one unit to the right if it is heads up, and one unit to the left if 
it is tails up. A more exhaustive description and in-depth study of random walks can be found in 
Feller [8] or Revesz [13]. A more playful introduction to the topic is given in the monograph by 
Dynkin and Uspenskii [7]. A topic of interest is the position of the particle after 2n coin tosses: 
Y2n = Xx + X2 + • • • + X2n9 where Xi is +1 or -1 depending upon whether or not the coin showed 
heads in the Ith coin toss. Note that the Xf are independent and identically distributed variates 
with mean 0 and variance 1. The probability distribution of the position of the particle after In 
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moves can be derived from a simple combinatorial argument [see, e.g., [8], p. 75? or [13], p. 13) 
and is given by 

P«>b(r2^2*) = ^ J 2 - 2 - , 

where k = -#i, - w +1,.. . , n and n is a positive integer. The matter of interest in the context of this 
note is the distance to the origin \Y2n | at time t = 2«. Its moments are given by 

Ei4jr=iL^V2»|2*r, 
k=-n v / 

and one sees that E\Y2n \r = 2r~2n Sr(ri), thus establishing the connection to the absolute sums from 
the introduction. The limit behavior of these sums now becomes clear. By the central limit theo-
rem (see, e.g., [11], p. 18), one has that Y2n9 for sufficiently large n, follows a normal distribution 
with mean 0 and variance 2w. This implies that, asymptotically, \Y2n\ has a half-normal or central 
chi-distribution, so that 

E | y |r H(r + l)/2] 2rnr,2 
hl¥lnl r(i/2) 2 

(see, e.g., [12], pp. 420-21). This gives the asymptotic behavior of the sums as 

SM=22--'- E\Y2„ r ~ r [ ^ 2 W 2 , 
and, upon expanding the gamma functions, one recovers the limit results (5) and (6). 

5e DISCUSSION 

One could possibly use the relation of the Gandhi polynomials to the sums S2r+l(n) to gain 
new insights on the former. In particular, one now has an expression to derive the function values 
of the Gandhi polynomials for negative integral arguments: 

For example, one easily obtains Fr(-1) - (-If1 and Fr(~2) = (-l)r"1(22r"1 +1) / 3. 
Likewise, one can use the relation of the moments of the absolute distance to the origin in a 

symmetric Bernoulli random walk and the sums Sr(n) to express these moments in terms of the 
polynomi-als Pr(n) and Q.(ri): 

E\Y2„t=TQr(n) and E l ^ r 1 ^ ^ " * 1 * / ^ . 

This equivalence can be used to establish the rate of convergence to the moments of the half-
normal distribution. 

Finally, it should be noted that one can also determine expressions for S2r(ji) by means of the 
generating function 
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so that S2r(h) = f£2r\0). However, this approach covers only the even-indexed case, and does 
not give the same insights as the one we have followed here. 
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