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1. VIETA AIWAYS AND POLYNOMIALS 

Vieta Arrays 
Consider the combinatorial forms 

B(n,j) = (n-j-1 
(° *;*[¥]) 

and 
Hnj)=^]tjj) (°^M)' 

(i . i) 

(1.2) 

where n(> 1) is the 11th row in an infinite left-adjusted triangular array. Thee the entries in these 
arrays are as exhibited in Tables 1 and 2. 
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In the notation and nomenclature of this paper, Table 1 will be called the Vieta-Fihonacci 
array and Table 2 the Vieta-lucas array. The Table 2 array has already been displayed in [5] 
where its discovery is attributed to Vieta (or Viete, 1540-1603) [8]. 

Vieta Polynomials 
From (1.1) and Table 1, we define the Vieta-Fibonacci polynomials Vn(x) by 

\x"-2k-\V0(x) = 0. 
k=Q \ tv J 

From (1.3), we find: 

Vjix) = t V2(x) = x, KJx) = r2 - 1 , V4{x) = x3 -2r„ j 
V3{x) = x' - JJT + 1? F51X- = v* - 4 T J 4- 3z, P7(r) = A6 - 5;c4' + 6;r" - 1 , . . . j 

Bqi^uo!1! f L^) and Tafaf? ?. ̂ aa Iir/iJ,a the d^toiition of the Vieia-Lucas polynomials vn(x) as 

(1.3) 

(1.4) 
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v»W = i ( " ^ r r r f l ,
i k * V 2 * , v0(x) = 2. (1.5) 

From (1.5), we get: 

vt(x) = x, v2(x) = x2-2, v3(x) = x3- 3x, v4(x) = x4- 4x2 + 2,1 
v5(x) = x5-5x3 + 5x, v6(x) = x6-6x4 + 9x2-2? . . . . J 

Remark: Array Table 2 [8] and polynomials v„(x) were Investigated in some detail in [5], while 
some fruitful pioneer work on vn(x) was accomplished in [3]. Array Table 1 and polynomials 
V„ (x) were introduced in [6]. But see also [1, p. 14] and [4, pp. 312-13]. 

Recurrence Relations 
Recursive definitions of the Vieta polynomials are 

V„(x) = xV„_1(x)-V„_2(x) (1.7) 
with 

V0(x) = 0, V1(x) = l, (1.7a) 
and 

vn(x) = xvM.1(x)-v„_2(x) (1.8) 
with 

v0(x) = 2,vl(x) = x. (1.8a) 

Characteristic Equation Roots 
Both (1.7) and (1.8) have the characteristic equation 

A2-Ax + l = 0 (1.9) 
with roots 

so that 

a = i ± A f / ? = ̂ A , A = V ? ^ 4 (1.10) 

a/?=l, a+fi = x. (1.11) 

Purpose of this Paper 
It is proposed 
(i) to develop salient properties of Vn(x) and vw(x), and 

(ii) to explore the interplay of relationships among Vieta, Jacobsthal, and Morgan-Voyce 
polynomials (while observing the known connections with Fibonacci, Lucas, and Cheby-
shev polynomials). 

2, VIETA-FIBONACCI POLYNOMIALS FM(x) 

Formulas (2.1) and (2.2) below flow from routine processes. 

Binet Form n _ on 
VM=SL-f~- (21) 

Generating Function „ 
Z^(*)y" l ^[ i -^+/r I . (2.2) 
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Simson's Formula 

Negative Subscript 

Differentiation 

A neat result: 

^ i ( * ) * U * ) - V^ix) = -1 (by (2.1))]. (23) 

Kn(x) = -Pn(x) (by (2.1)). (2.4) 

^M^nVn(x) (by (2.1), (3.1)). (2.5) 

VnWV^i-x) +Vn(rxWn-l{x) = 0 (#i > 2). (2.6) 
Induction may be used to demonstrate (2.6); see [6]. 

3. WETA^LUCAS POLYNOMIALS V^JC) 

Standard techniques reveal the following basic features of vn(x). 
Binet Form 

vn(x) = an + fi". (3.1) 
Generating Function 

Simsonvs Formula 

Negative Subscript 

Miscellany 

CO 

y£v„(x)y = (2-xy)[l-xy+yiTl- (3-2) 
11=0 

(—In odd., 
vn+,(x)v„_1(x) - v„(x) = | A 2 ^ evgn^ (3.3) 

v_„(x) = v„(x). (3.4) 

vB(*K_,(-x) + vB(-x)vlf_1(x) = 0. (3.5) 
yfr) + £ i (* ) - ^» (* )Vi (* ) = -A2. (3.6) 

v„(x2-2)-v2(x) = -2 . (3.7) 

(i) Results (3.3)-(3.7) may be determined by applying (3.1). To establish (3.5) by an alternative 
method, follow the approach used in [6] for the analogous equation for Vn (x). 

(ii) Both (3.6) and (3.7) occur, in effect, in [3]. 
fiii) There are no results for V„ (x) corresponding to (3.6) and (3.7) for vn(x). 
(iv) Observe that, for vn(x2 - 2 ) , the expressions corresponding to a, fi, and A in (1.10) become 

a* = a\^ = fi\A* = xA. 
Permutability 
Theorem 1 (Jaeobsthal [3]): vm(yn(x)) = vn(ym(x)) = vmn(x). 

Proof: Adapting Jacobsthal's neat treatment of this elegant result, we notice the key nexus 

vn{x) = vn[a + ̂ a " + a-" (by (1.11), (3.1)). (3.8) 

whence 
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vm„(x) = a"m + a-"m (by (3.1)) 
= v„(am + a-m) (by (3.8)) 
= v„(vm(x)) (by (3.1)) 
= vm(v„(x)) also. 

Remark: There is no result for V„(x) corresponding to Theorem 1 (Jacobsthal's theorem) for 
V„(JC), i.e., the V„(x) are nonpermutable [cf. (9.3), (9.4)]. 

4. PROPERTIES OF Vn(x), vH(x) 

Elementary methods, mostly involving Binet forms (2.1) and (3.1), disclose the following 
quintessential relations connecting V„(x) and vn(x). 

Vn(x)vM = V2„(x). (4.1) 
^ W - U ^ ) = v„W. (4.2) 

v„+,W-v„_1W = A2r„(x). (4.3) 

v„(x) = 2V„+1(x)-xV„(x)- (44) 
A2V„(x) = 2v„+l(x)-xv„(x). (4.5) 

Notice that (4.4) is a direct consequence of the generating function definitions (2.2) and (3.2). 

Summation 
m 

A2tVM = vm+l(x) + vm(x)-x-2 (by(4.3)). (4.6) 

m 

Iv„W = FMlW+F„(x)-l (by(4.2)). (4.7) 

Slims (Differences) ©f Products 
Vm(x)v„(x)+Vn(x)vm(x) = 2Vm+„(x). (4.8) 
Vm(x)vn(x) -V„(x)vm(x) = 2Vm_„(x). (4.9) 

vm(x)v„(x) + A2Vm(x)V„(x) = 2vm+„(x). (4.10) 
vm(x)vn(x) - A2Vm(x)Vn(x) = 2v^„(x). (4.11) 

Special cases m = n: In turn, the reductions are (4.1), 0 = 0 (1.7a), and 
v2(x) + A2V2(x) = 2v2n(x) (by (4.10)), (4.12) 

v2(x)-A2V2(x) = 4 (by (4.11)). (4.13) 

Associated Sequences 
Definitions^ The k% associated sequences {V}k)(x)} and {v^}(x)} of {Vn(x)} and {vn(x)} 

are defined by, respectively (k > 1), 
Kik)(x) = V&\x)-V&\x), (4.14) 
v?\x) = i & V ) - i&»(x), (4.15) 

where V}°\x) = V„(x) and v<0>(x) = v„(x). 
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What are the ramifications of these ideas? 
Immediately, 

V?\x) = v*(x) (from (4.2)), (4.16) 
v^(x) = A2Vn(x) (from (4.3)) (4.17) 

are the generic members of the first associated sequences {f^P(x)} and {v£\x)}. 
Repeated application of the above formulas eventually reveals the succinct results: 

V2m(x) = v(2m~l\x) = /&Vn(x), (4.18) 

V^l\x) = v2m(x) = A2"Vw(x) • (4.19) 

5* THE ARGUMENT -x2t ¥IETA AND MORGAN-VOYCE 

Attractively simple formulas can be found to relate the Vieta polynomials to Morgan-Voyce 
polynomials having argument -x2. Valuable space is preserved in this paper by asking the reader 
to consult [2] and [6] for the relevant combinatorial definitions of the Morgan-Voyce polynomials 
B„(x)9 b„(x), Q(x)5 and cn(x). 

Alternative proofs are provided specifically to heighten insights into the structure of the 
polynomials. Equalities in some proofs require a reverse order of terms. 

Theorem 2: 
(a) K2lI(x) = ( - i r , xB B (-x 2 ) . 

o>) ^»-iW=(-irI*»(-*2). 
(a) 

Proof 1: 

Proof 2: 

n-l 

= F2n(x)(by(1.3)). 
> {2k+ 1 

,2k+l (by [6, (2.20)]) 

(b) 
Proof 1: 

Proof2: 

V2„(x) = i-iy-'xlU-x^+B^i-x2)] (by [6] adjusted) 
= (-\y-lxB„(-x2) (by [2, (2.13)]). 

(-\rX(-x2)="±(-\)k+"-l^ + *k-iyk (by [2, (2.21)]) 

= ̂ -i(*)0>yO13)). 

^2-1(*) = (-1)"(*24,(-*2) " b„-i(~x2)) (by [6] adjusted) 
= (-l)"(-6n(-x2))(by[2,(2.15)]) 
= (-iy-\(-x2). 

Corollary 1: V2„_l(ix) = (-i)"-lb„(x2) (i2 = -1). 
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Theorem 3: 
m v2n(x) = (-iycn(-x2y 
(h) v2„_l(x) = (-irlxcn(-x2) 

(a) 
Proof: 

fn-1 
(-l)"C„(-x2) = (-!)» g ( - i ) ^ ^ : J + ̂ x2fc

+(-l)»x2" (by [6, (2.2)]) 
U=o 

= v2„(x)(by(1.5)) 
[= ( - l ) " ^ - * 2 ) - * 2 ^ - * 2 ) ) (by (3.21)]). 

(b) 
Proof: 

(-l)^XCn(-x2) = p-ir"^^+J_fyk-1 (by [2, (3.23)]) 
= v2l_1(x) (by (1.5)) 

[=(-l)n-1x(Cn_1(-x2) + c„_1(-x2)) (by [2, (3.11)]]). 

Corollary 2: v2n(ix) = (-l)"C„(x2) (f2 = -1). 

6. THE ARGUMENT - - V : VEETA AND JACOBSTHAL 
or 

Here, we discover connections between the Vieta and Jacobsthal polynomials. 

Theorem 4: 

(a) V„(x) = *"-%(-ji} 

(b) v„(x) = x7„ ( -^ j ) (by [6, (2.7)]). 

(a) 
Proof: 

M, 

= ^ _ 1 ^(-^-) (by[6 , (2 .3) ] ) 

!*"'l[^-i(-^-) + ( -^)^-2( -^) ] by definition of Jn(x) 

I = *""1^-i(-i-)-^"Vn_2(-^) as in [6] adjusted 
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Proof: 

^{-^)%^^{nlkY- (by[M2.6)]) 
= v„(x)(by(1.5)or[5, (1.9)]) 

\=x"[jn-i{-jr) + {-jr)jn-2{-jr)] by definition ofjn(x)\ 

\_=X"J»-A~lfi)~X" Jn-2\-^r) J 

7. THE ARGUMENT-: JACOBSTHAL AND MORGAN-VOYCE 

Next, we detect some attractive simple links between Jacobsthal and Morgan-Voyce polyno-
mials involving reciprocal arguments x, ^. 

Theorem 5: 

(a) B„(x) = x»-1J2n(±y 

(b) c„(X)=x"j2„(±y 

(a) This is stated and proved in [6, (2.8)]. 

(b) 
Proof: 

= C„(x)(by[6, (2.2)]). 

Upon making the transformation x -^ £ in Theorem 5(a) and (b), we obtain their Mutuality 
Properties in Corollary 3(a) and (b). 

Corollary 3 (Mutuality): 

(a) J2„(x) = x"-lB„(±y 

(b) J2n(x) = x"C„{^j. 

Combining Theorems 2(a) and 4(a), we get 

X2n'%n ( ~ 4 f ) = V2n(x) = (-irlxBn(-X2) 
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leading to 

n,(-x2)=(-«ar1^,(-^), 
thus confirming Theorem 5(a) when x ->-x 2 . Conclusions of a similar nature link j2„(-^-)? 

v2n(x), and bn(-x2) in Theorems 3(a), 4(b), and 5(b). 

Theorem 6: 

(a) b„(x) = x"-lJ2n_1(±y 

(b) c„(x) = / \ , ( 0 
Proof: Similar to that for Theorem 5. 

Corollary 4 (Mutuality): 

(a) J2n-1{x) = x"-\(^. 

(h) h„-1(?c) = x"-\[^. 

8. ZEROS OF Vn(x), vtt(x) 

Known zeros of the Morgan-Voyce polynomials [2, (4.20)-(4.23)] may be employed to 
detect the zeros of the Vieta and the Jacobsthal polynomials. Some elementary trigonometry is 
required. 

(a) Vn(x) = 9 
By [2, (4.20)] and Theorem 2(a) with x->-x2, the 2 « - l zeros of V2„(x) are 0 and the 

2(n -1) zeros of Bn(-x2), namely (r = 1,2,...,«-1), 

x = ±2 sin (- % 1 = ±2 c o s f ^ - x) 
V»2j {2n ) ( 8 J ) 

r -2cos—n {m-2n, i.e., weven). 

Similarly, by [2, (4.21)] and Theorem 2(b) with x-» -x2, the 2ra-2 zeros of V2n_l(x) are the 
2(» -1) zeros of bn(-x2), namely (r = 1,2,...,«-1), 

\2n-\ ) x = +2 sin | %-\ ^\ = ±2 cosl 
.211-1 2 j U - . , ( g 2 ) 

:2cos—-;r (WI = 2 # I - 1 , i.e., m odd). 

Zeros 2cos-^;r given in (8.1) and (8.2) are precisely those given in [7, (2.25)] for y = -1 (for 
Vm(x)) when m is even or odd. See also (7, (2.23)]. 
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(b) vH(x) = 0 
Invoking Theorems 3(a) and 3(b) next in conjunction with [2, (4.22), (4.23)] for Cn(x) and 

c„(x) and making the transformation x -> ™x2, we discover the n zeros of vw(x) are (r = 1,..., #i) 

0 (2r-l x = 2cos -——n V 2n 

which is in accord with [7, (2.26)]. See also [7, (2.24)]. 
Alternative approach to (a) and (b) above: Use the known roots for Chebyshev polynomials 

(9.3) and (9.4). 
(c) Zeros of Jn(x)9 jH(x) 

From Theorems 4(a), 4(b), it follows that the zeros of J„(x), j„(x) are given by — \ - > x . 
This leads in (8.1)-(8.3) to the zeros of J„(x), jn(x) as 

1 1 

that is, for 

(e) JH(x) = 0: x = - | s e c 2 ^ , (8.4) 

These zero values concur with those given in [7, (2.28(, (2.29)] if we remember that 2x in the 
definitions for J„(x\ j„(x) in [7] has to be replaced by x in this paper (as in [6]). Refer also to 
Corollaries 3(a) and 3(b). 

9. MEDLEY 

Lastly, we append some Vieta-related features of familiar polynomials. 

Fibonacci and Lucas Polynomials FH(x), LH(x) 

Vn(ix) = i"-lFn(x) (i2 = -l). (9.1) 

vn(ix) = fLn(x) ([5]). (9.2) 

Chebyshev Polynomials TH(x)9 Un(x) 

K(*) = Un(±Xy (9.3) 

v„(x) = 2T„(±xSj ([3], [5]). (9.4) 

Suggested Topics for Further Development 
1. Irreducibility, divisibility: Detailed analysis for vn(x) as in [5] is, for Vn(x), left to the 

aficionados (having regard to Tables 1 and 2); 
2* Rising and falling diagonals for Vieta polynomials (which has already been done for the 

Chebyshev polynomials and which has been almost completed for Vieta polynomials); 
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3. Convolutions for Vn{x) and vn(x) (in which much progress has been achieved); 
4, Numerical values: Consider various integer values of x in Vn(x) and vn(x) to obtain sets of 

Vieta numbers. Some nice results ensue. Guidance may be sought in [2, pp. 172-73]. 

Conclusion 
Apparently the v„(jt) offer a slightly richer field of exploration than do the V„(x). However, 

many opportunities for discovery present themselves. Hopefully, this paper may whet the appetite 
of some readers to undertake further experiences. 
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