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1. INTRODUCTION

The p-adic order, v ,(r), of r is the exponent of the highest power of a prime p which divides
r. We characterize the p-adic order v ,(F,) of the F, sequence using multisection identities. The
method of multisection is a helpful tool in discovering and proving divisibility properties. Here it
leads to invariants of the modulo p? Fibonacci generating function for p #5. The proof relies on
some simple results on the periodic structure of the series F,.

The periodic properties of the Fibonacci and Lucas numbers have been extensively studied
(e.g., [13]). (For a general discussion of the modulo m periodicity of integer sequences, see [8].)
The smallest positive index 7 such that F, =0 (mod p) is called the rank of apparition (or rank of
appearance, or Fibonacci entry-point) of prime p and is denoted by n(p). The notion of rank of
apparition n(m) can be extended to arbitrary modulus m>2. The order of p in F,, will be
denoted by e = e(p) = v,(Fy,)) 2 1. Interested readers might consult [6] and [9] for a list of rele-
vant references on the properties of v,(F;).

The main focus of this paper is the multisection based derivation of some important divisi-
bility properties of F, (Theorem A) and L, (Theorem D). A result similar to Theorem A was
obtained by Halton [4]. This latter approach expresses the p-adic order of generalized binomial
coefficients in terms of the number of "carries." Theorem A can be generalized to include other
linear recurrent sequences and a proof without using generating functions was given in Exercise
3.2.2.11 of [6]. The latter approach is implicitly based on multisections.

The generating functions of the Fibonacci and Lucas numbers are

f(x)= 2’“ =—%— and h(9)= ;L,,x” = 1—2)«:;—);2
respectively. In this paper the general coefficients of these generating functions will be deter-
mined by multisection identities, as we prove
Theorem A [9]: For all n>0, we have
0, ifn=12 (mod3),

e ifn=3 (mod6),
v, (F)= 3, ifn=6 (mod12),
v,(M+2 ifn=0 (mod12),

vs(F,) = vs(n),

v,(n)+e(p), ifn=0 (modn(p)),

if p#2 and 5.
0, ifng0 (modn(p)), L 0"

v(F) = {

The cases p=2 and p =5 are discussed in Sections 2 and 3, respectively. The general case
is completed in Section 4. The case of p =2 has been discussed in [5] using a different approach.
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The multisection based technique offers a simplified treatment of this case. We extend the
method to the Lucas numbers in Section 5.

By the m-section of a power series g(x) =2 ,a x" we mean the extraction of the sum of
terms a,x’ in which / is divisible by m. We use the resulting power series gx)=20 a,,x™ in
its modified form g,,(x'™) =¥ a,,x" and call it the m-section as well. The corresponding se-
quence {a,, )., of coefficients is referred to as the m-section of the sequence {a,}?,. The
notion of m-section can be generalized to form a sum of terms with index / ranging over a fixed
congruence class of integers modulo m. It will be used in Sections 2 and 5. There are various
general multisection identities (cf. [10, p.131] or [1, p. 84]), and they can be helpful in proving
divisibility patterns {(e.g., [2]). The m-section of the Fibonacci sequence leads to the form

e F x
F x"= 1 . 1
Zg, " 1-Lx+(=1)"x? )

The denominators are referred to as Lucas factors. For other applications of Lucas factors, see
{111
The present proof of Theorem A is based on a multisection invariant. In fact, we will see in
(5), (13), and (14) that x/(1-x)? or x/(1+x)? is an invariant of the properly sected Fibonacci
generating function taken mod p? for every prime p #5. The power of p can be improved easily.
We shall need some facts on the location of zeros in the series {£, modm} .

Theorem B (Theorem 3 in [13]): The terms for which F, = 0 (mod m) have subscripts that form
a simple arithmetic progression. That is, for some positive integer d =d(m) and for x=0, 1, 2,
..., n=x-d gives all n with F, = 0 (mod p) unless / is a multiple of n(p).

Note that d(m) is exactly n(m), and d(p') = d(p) = n(p) for all 1<i<e(p). It also follows
that F, # 0 (mod p) unless / is a multiple of n(p).

We denote the modulo m period of the Fibonacci series by #(m). Gauss proved that the ratio

z(p) -
(o) 18 1, 2, or 4. In fact, we get

Lemma C {9]: The ratio %;— can be characterized fully in terms of x = F,( ) = Fy(,)«1 (mod p) by

n(p), iffx=1 (modp),
ﬂ(p) = 2n(p)7 iffx=-1 (mOd p),
4n(p), iffx*=-1 (modp).
In the first case, p must have the form 10/ + 1while the third case requires that p = 4/+1.

We also will repeatedly use two identities (cf. (23) and (24) in [12]) for the Lucas numbers

with arbitrary integers 4 > 0:
Ly =21 +5F, @

I2 = 4(-1)" +5F}. 3)

It is worth noting that our proofs of Theorems A and D rely on three congruences for the
Lucas numbers (cf. Lemmas 1, 2, and 3) which, in turn, can be improved significantly (cf. Lem-
mas 1/, 2’, and 3') using the theorems.
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2. THE CASE OF p=2

By adding together the six 6-sections¥ = Fy,, x***, 1=0,1,..., 5, of the generating function
f(x), we obtain

f(x)=

x+x2 +2x3 +3x* +5x° + 8x% — 5x7 +3x% — 27 + x10 — x!!

1-18x5 +x"2

which is equivalent to the recurrence relation F,,,, =18F, —F,, F,=0, F;=1,..., F;,=89.
This immediately implies that
0, ifn=12 (mod3),

v,(F)=11 ifn=3  (mod6),
3, ifn=6  (mod12).
It remains to be proven that
Va(Fam) = Vo (M) +4. C))
To this end, first we note that

Lemmal: L, =2 (mod2?) forall k >0.

In fact, the modulo 4 period of F, is 6, and this implies Lg; =2F;;,; =2 (mod 4) for every
integer j >0.
By identity (1), we obtain that, for all £ >0,

> F, X
1224 o _ nx" (mod2?). ®)
Z;) Fp 1=L e +x? (1 x)z "Z‘l

We have Fj, =144=2%.9. By setting k=0 and n=2 in (5) it follows that Fj,,/F, =2 (mod
2%), thus v,(F,,) = v,(F,)+1=5. In general, we use n=2 and observe that

Va(Flpghn) = Va(Fppr) +1= = y(Fp) +k +1=4+1,(2°)

follows by a simple inductive argument We complete the proof of (4) by noting that, for » odd,
VZ( 22k ) V2( 2*) holds by (5)

A sharper version of Lemma 1 can be derived from Theorem A (once it has been proven).
Lemmal': L,,, =2 (mod 2%*%)forall k 0.

Proof of Lemma 1': We note that L, , =2 (mod 2¥+3) can be derived easily from the per-
iodicity of F}, for L, = 2F,, ., =2 (mod 2*%) as 7(2) =12-2"2, I>1. We notice, however
that the sharper L;,=322=2 (mod 2°) also holds. Moreover, identity (2) yields L
(mod F, 12-2" ), and we derive that L

12 2k+l
12960 =2 (mod (2**)?) using Theorem A. Accordingly, we

can replace the exponent of p in identity (5). O

3. THE CASEOF p=5§

This case is a little more involved. We will find vs(F,), £ > 1, in terms of vs(F) in three
steps. In the first two, we assume that (n, 5) = 1, then we deal with the case of n=35.
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First, we take the 5-section of f(x) and obtain

3 F; n X X w©
Ml — = o s
ZF; I-1lx—x* 1-x-x2 > Fx" (mod 5),

n=0 n=1

which guarantees that v(F;,) = vs(F) if (n,5)=1. In the second step, we try to generalize this
relation for indices of the form 5n, (n,5) =1, k >2. We shall need the following lemma.

Lemma 2: Lg.— Ly =0 (mod 25) for k >1.

Proof of Lemma 2: By identity (3) we have, for k >1, that L@M ~—L§k =0 (mod FS%). It

follows that
(L5k+1 - Lsk)(LSkH + L5k) =0 (mod25) ©)

by Theorem B. Clearly,
L5k+1 = Lsk = L5 =1 (mod 5), (7)

thus the factor L. + Ly cannot be a multiple of 5. Therefore, L. — Ly =0 (mod 25) by iden-
tity (6). O
We note that vs(F,s) =2. It is true that, for k 1,

i F;k”n _ F;"n "= X _ X
Fk+l F, 1-—L5k+:x—x2 l—Lskx—xz

n=0\_ - § 5
= (Lsm - LSk)

X X
1—L5k+1x—x2 1“L5kx—x2 '

The first factor is divisible by 25 according to Lemma 2. For (1, 5) =1, we get
Vs(Fgr,, | Fgp) = Vs(Fypmr, [ Fypn) =+ = vs(F5, 1 F5) = 0, ®
i.e., vs(Fy )= vs(Fy) by induction on £ 21.
Now we turn to the case of n=5. For k21 and n=35, we get that Fy.o /Fyu = Fypa /[ Fy

(mod 25); therefore,
Vs(Fypa) = Vs(Fgn) +1= - = vs(Fs) + k+1.

by induction using vs(F,s/F;) =1. The proof of the case p =5 is now complete. O
Note that, once it is proven, Theorem A guarantees the much stronger lemma.
Lemma 2': Ly = Ly (mod 5%) for k >1.

We note that an alternative derivation of (8) is possible by (7) but without using Lemma 2:

x x -
=) F®P%" (mod 5
1—L5k+1x"x2 1—L5/,x—x2 ; " ( )
with E® being the 2-fold convolution of the sequence F,. The m-fold convolution of the se-

quence F, is defined by
‘F;x(’"): Z ElEZE ?

m
iyHig et =n
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which has the generating function [f(x)]". Note that, by identity (7.61) on page 354 in [3],
F® =1(2nF,,,—(n+1)F,)=%(2F,, - F)-1F,=%L,-1F,. We can easily find the period of -

n

F(™ by the general theory (cf. [8]) or by simple inspection. The latter approach also provides us
with the actual elements of the period. It is clear that 100 is the modulo 25 period of nL,— F,,
and nl, — F, is divisible by 25 if n is divisible by 5. It follows that 5|F® if 5|n.

4. THE GENERAL CASE

In this section p is a prime different from 2 and 5, and 7 denotes an integer for which v ,(n) is
either 0 or 1. We will use either an n(p)p*- or a 2n(p)p* -section in obtaining the required divisi-
bility properties. First, we prove

Lemma 3: For any prime p =3 (mod 4),
_j 2 (modp?), if n(p)/n(p)=1,
PP 2 (mod p?), if #(p)/n(p) = 2.

Proof: Formula (3) yields that, if #> 0 is even, then 13, — I>=0 (mod F?). Note that n(p)
is even for p =3 (mod 4) (see [13]). By setting 2 =n(p)p* we obtain

(Lanpyp* = Lngoyp) Lan(pypt + Ly pr) =0 (mod p?). )]
Therefore, either
Lyn(pypt = Lu(pypr (mod p %) (10)
or
Lantpypt = ~Lugpypr (mod p?), (11)

for otherwise both L, ;) = Lypypt and Ly, ot + Ly e Will be divisible by p. This would lead
to L, =0 (mod p), which is impossible as L,y = 2F,, ¢+ (mod p). According to identity
(2), Ly = 2+5F; ), which yields L,,,, =2 (mod p?) and also
Lynpyp =2 (mod p?) (12)

by Theorem B [13].

If #(p)/n(p) =1, then F,,; =1 (mod p) by Lemma C, and we get L,,(,) = L, =2 (mod
p) and, similarly, L,, ¢ = Lyt =2Fp) 41 =2 (mod p), leading to (10). If #(p)/n(p) =2,
then Fy,).=-1 (mod p) and Ly,,) =Ly, =2 (mod p) and L,y pr ==Ly pr =2 (mod p)
corresponding to (11). O

We are now able to finish the proof of Theorem A. In the case of z(p)/n(p)=1 and 2, we
can use

5 Faiorptn m _ x x

) ) =2 G (mod p?), (13)
7=0 Fo) 1= L,y X+ x2 (1+x)? ;_1

which proves v, (F,pyptn) = Vp(Fupy ) + V(1) for v,(n) <1. In particular, by setting 7= p, we
obtain v, (Fp)pee) = Vp(Fupypt) +1, and v, (Fy ) en) =e(p)+k +1 follows by induction on
k>0. In summary, we derived that v,(F,)y.)=e(P)+k+v,(n) and the proof is now
complete.
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On the other hand, if #(p)/n(p)=4, then we switch from using an n(p)p*-section to a
2n(p)p* -section. By the duplication formula (cf. [3] or [12]), we get Fangpypkn = Fup) pin L pypn
for any integer 7> 0. This yields Vo(Fan(pypin) = Vp(Fupyptn) . We consider

3 F2n(p)p"n n__ X
x" = 5
=0 Fanp)pt 1= Loy pyprX +%
Identity (12) implies that
> et o X $ e mod p?). (14)
n=0 Fén(p)pk (1 - x) n=1

The proof can be concluded as above for
VolFapypin) = VoFanpy pi) = Vo (Fan(p)) + + V(1)
=V,(Fap) +h+v(m)=e(p)+k+v,(n). O
By means similar to Lemma 1’, we can prove a stronger version of Lemma 3.
Lemma 3': For any prime p =3 (mod 4),
Ly s = { 2 (mod pXi+e0), if 2(p)/n(p) =1,
~2 (mod p¥*+eP))), if x(p)/n(p)=2.

Proof: We know that v,(F7,+) =2(k +2(p)) by Theorem A. Thus, we can replace p? by

pHk+e(p)) in identities (9)-(14). O

We note that, according to Lemmas 1" and 3, the denominators of the multisection identities
(5), (13), and (14) have either 1 or —1 as a double root modulo some p-power with exponent
2k +6 or 2(k+2(p)). This observation, combined with the remarks made in the proofs of the
lemmas, helps in obtaining the full description of the structure of the periods of the corresponding
multisected sequences [cf. (5), (13), and (14)] with respect to the above-mentioned p-power
moduli (p#5).

5. LUCAS NUMBERS

By using methods we applied to the Fibonacci sequence, we obtain

S o 20X 4300 4400 + Tt 10 - 18x° 1167 - Tx® 4 4x® — 310+ 1

Ly ¥ = 6 . 12 s
n=0 1-18x"+x

which proves that

0, ifn=12 (mod3),
(L) =42, ifn=3 (mod6),

ifn=0 (mod®6).

U,

b

If p =5, then the modulo 5 periodic pattern of L, is 2, 1, 3, 4, and thus 5/Z,,.

If p#2 or 5, then the order v,(L,) can be derived easily by the duplication formula and
Theorem A (see [9]). Here, for the sake of uniformity, we use multisection identities. We need
the companion multisection identity to (1) for the Lucas sequence:
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2-L.x
1-Lx+(-)"x*’

()= 3 L = 15)
n=0

As L, =F,,/F,, we see that L, is divisible by p only if 2» is a multiple of n(p) while 7 is not; in
other words, if n is an odd multiple of #n(p)/2. This implies that we have to deal only with the
case in which n(p) is even. The generalized @-sected Lucas sequence will suffice to prove

Theorem D: If p #2 and zn(p)/n(p) # 4, then, for every k >0 and m= (n(p)/2)p*,

) X (mod p?), if 7(p)/n(p) =1,

a-x2? =

R = DT (mod p?) i 2(p) /n(p) =2,

(+x2)? —
yielding v,(L,) = v,(n) +e(p) if n=n(p)/2 (mod n(p)).

Proof: Note that the conditions guarantee that n(p) is even. We discuss the case in which
#a(p)/n(p) =1 with k& = 0 only, while the other cases can be carried out similarly. We note that

Ln(P)lzl(x) = hn(p)/2(x) - hn(p)(xz)'

It is known that n(p)/2 is odd if z(p)/n(p) =1 (cf. [9]). The common denominator of the above
difference can be simplified. In fact, according to identity (15), the denominator of 4, ,,(x?) is

I(x)= Zéllmx" =

2in “'m

by L,y = LE 5y — 2(=1)"P", which follows from (2) and (3). We get
1L +x* = (1-x?)? ~ L% %" = (1-%?) (mod p?).
Finally, it is easy to see that /(x) simplifies to

%1:*;%;} (mod p?). O

The exponent of p can be increased to 2(k +e(p)) in the above proof and therefore in the theorem
also.
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