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1. INTRODUCTION 

An interesting paper by S0 L0 Basin in the April, 1964, issue of this 
th journal [1] develops the k Lucas number L, = S, where S, is the sum 

th of the k powers of the roots of 

(1) f(x) = a0x2 + ajx + a2 , 

in which a0 = 1, aj = a2 = - 1 . Although Basin?s S, originated from a 
demonstration of a property of Waring1 s formula, it is obvious, as Basin 
implies, that the same results could be obtained using Newton1 s formulas for 
S, in terms of elementary symmetric functions, 

In a previous paper [2 ] , the author tabulated S, from Newton1 s formu-
las for 

(2) f(x) = a0xn + ajx11 1 + • - • + a . 

The values of S, for k = 1(1)11 applicable for 1 < n ^ 11 are reproduced 
as Table 1* of this paper. 

It is proposed to examine the special case of (2), 

*/ v n n-i n-2 -
(3) f(x) = x - x - x - . . . - i , 

for n > 2 and to use Table 1 as a guide in extending the true Lucas sequence 
found from (1) to Lucas-like sequence s0 Also, a method by which partitions 
of numbers can generate terms of the Lucas-like sequences is presented. 

*This table is reproduced with all rights reserved, Reprinted by permission 
from the American Mathematical Society from Mathematics of Computation, 
Vol. 12, No. 63, pp. 194-198* Actually, it is S^ which is tabulated in [ 2] 
but is presented herein as Ŝ . to be consistent with this paper. 
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T a b l e 1 

S k f o r k = 1(1)11 

Si — — di/do, 

5 2 = ai2/ao2 — 2at/a$, 
53 = — ai3/a0

3 -f 3aifl2/ao2 — 3a3/ao, 
Si — 0i4/0o4 — 4ai2<z2/a0

3 4 (40i03 4- 202
2)/0O

2 — 4a4/a0 , 
5s = — 0i5/0o6 4 5ai3a2/ao4 — (5ai2a3 -f 5aiO2

2)/a0
3 4 (50i04 + Sa^a^)/a^ •— 5a&/a&, 

Si = ai6/ao« — 6a1
4a2/ao6+(6ai3a3H-9ai2a2

2)/ao4— (6ai2a4-f 120^^3-}- 2a2
3)/ao3 

-f- (60105 4 60<204 4- 3 0 3
2 ) / 0 Q 2 — 6a®/ao, 

57 = - aiVao7 4 7ai6a2/a0
6 - ( 7a / a 3 4 14ai3a2

2)/a0
6 

4- (7ai3a4 421ai 2 a 2 a 3 47aia 2
3 ) /ao 4 —(7fl2ia54l4aia2^447a22«3 47oia23)/ao3 

4 (7aia6 4 70*15 4 7a304)/0o2 — 7a7/ao, 
5 8 = 0i8/0o8 — 8oi6a2/0o7 4 (8ai5a3 4 20ai4a2

2)/a0
6 

— (80^04 4 32di30203 4 160i203
2)/0O

5 

4 (8oi3a6 4 24fli2a204 4 12ai203
2 4 240i02

203 4 2a2
4)/a0

4 

— (8ai206 4 160105505 4 I6010304 4 802
204 4 80203

2)/0o3 

4 (80107 4 80206 4 80305 4 404
2)/0o2 — 808/0O, 

S* = - 0i9/0o9 4 90!702/0O
8 - (90!603 4 270i602

2)/0o7 

4 (90i504 4 45a ^ 0 ^ 3 4 3O0i302
3)/0O

6 

— (90i405 4 36ai30204 4 180i303
2 4- 540i202

203 4 9ai02
4)/ao

5 

4 (90i306 4 27fli20206 4 270i20304 4 27ala2
2ai 4 270i0203

2 + 902
303)/0O

4 

— (90i207 4 180105506 4 18010305 4 901042 4 902
206 4 180550304 4 303

3)/0o3 

4 (9010s 4 90207 4 90306 4 9040B)/0o2 — 909/0O, 
5 l 0 = a^ /00 1 0 - IQ01W0O9 4 (lO0i703 4 350i602

2)/0o8 

— (1O0I 6 0 4 4 6O0i50203 4 5O0i402
3)/0O

7 4 ( 1 O 0 I 5 0 5 4 5O0i40204 

4 250i403
2 4 lOO0i302203 4 250i202

4)/0o6 - (1O0I 4 0 6 4- 4O0i30205 

4 4O0i30304 4 6O0i202
204 4 6O0i203

202 4 4O02
3030i 4 202

6)/0O
6 

4 (lO0i307 4 3O0i20206 4 3O0i20305 4 150i204
2 4 3O0i02

205 

4 60010^304 4 1O02
304 4 1502

203
2 4 1O0I0 3

3 ) /0O 4 

— (lO0i208 4 2O0i0207 4 20010306 4 20010405 4- 200550305 
4 1O02042 4 lOa2

206 4 lO03
204)/0o3 -4 (10aio9 4 1O0208 

4 100307 4 100406 4 50B
2)/0O2 — 1O0IO/0O, 

5 n = - ai
n/a0

u 4 II01W0O1 0 - ( l l0 i 803 4 44a1
702

2)/0O
9 

4 ( l l0 i 7 0 4 4 770i60203 4 7701
602

3)/0o8 - ( l l0 i 6 0 5 4- 6601*0204 
4 330i6023 4 1650i402

203 4 550i302
4)/0O

7 4 ( l l0 i 5 0 6 4 550i40205 

•4 550i40304 4 llO0i202
303 4 HO01W04 4- HOoi^j^s2 4- Il0i02

5)/0o8 

— (Il0i407 4 44-0i30206 4 440i30306 4 220i304
2 4 660i202

206 
4 1320i2020304 4 440i02

304 4 660i02
203

2 4 I I0 /03 4- 22ai2a/)/a0
b 

4 ( l l0 i 308 4 330i20207 4- 330i20308 4 330i20405 4 330i02
206 

4 66010J50305 4- 33010204
2 4 330i03

204 4 ll02
306 4 3302

20304 4 ll0a802)/0o4 

— (Il0i209 4 22010*08 4- 22010307 4 220i0406 4 11010s2 4- ll02207 
4 22020306 4 22020405 4 ll03#42 4 ll03

205)/0o3 4 (II0101O 4 H0209 
4 l l 0 3 0 8 4 H0407 -4 110606)/0Q2 ~ 1 l01l/0O. 
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The liberty of calling the sequence f! Lucas-like" appears justified since 
(1) (as used by Basin) is a special case of (3) and, moreover, the sequences 
do indeed share characteristics with the true Lucas sequences„ 

20 OBSERVED BEHAVIOR 

To identify terms of a sequence and at the same time to retain a Lucas 
flavor, the terminology L | ' is used to specify the k term of a Lucas-

(n) like sequence obtained from (3) for a given n > 20 For convenience, S^ ; = 
th (2) L^v

0 It is noted that L;_ is the true k"Ai Lucas number, L, . For any (n) 
"k • ^ ^ * — — ^k 

given k < 11 and 2 < n < 11, it is a simple matter to enter Table 1, reject 
all coefficients of a terms having subscripts greater than n and add the 

th numerical coefficients of the remaining a terms to obtain a k Lucas-like 
numbera The choice of signs in (3) automatically makes the signs of the num-
erical coefficients positive,, For examples 

(4) 
(2) 1 + 4 + (0 + 2) + 0 = 7 

The first seven terms of several Lucas-like sequences obtained in this manner 
are recorded in Table 2e For later use, a zig-zag line divides the table into 
two parts. For n = 2, it is seen that the difference between the first two 

n-i terms (those above the zig-zag line) is 2 (i. ea , 2 for n = 2), and that the 
sum of two consecutive terms determines the next term. For n = 3, the dif-

n~2 ference between the two first terms Is 2 , and the difference between the 
n-l second and third terms Is 2 . There are three terms above the zig-zag 

line0 For n = 3, the sum of three consecutive terms determines the next 
term. 

Table 2 
VALUES OF L (n) 

•N 
1 
2 
3 
4 
5 
6 
7 

n 1 

1 
1 
1 
1 
1 
1 
1 

2 

1 
3 
4 
7 

11 
18 
29 

3 

1 
3 
7 

11 
21 
39 
71 

! 4 

1 
3 
7 

15 
26 
51 
99 

5 

1 
3 
7 

15 
31 
57 

113 

6 

1 
3 
7 

15 
31 
63 

,120| 
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The obvious pattern is repeated for n = 4, 5, etc. 
One immediate conclusion is that each Lucas-like sequence is , in reality, 

the blend of two sequences,, The first sequence is 1,3,7,° • ° , 2 - 1 having 
n terms and governed within its range by the recursion formula 

(5) i f t = L f + 2k , (L<n> = 1) . 

The second sequence starts with the sum of the n terms of the first sequence. 
The first term is 

(6) L < ? = 2 n + 1 - n - 2 . 
\ / n + 1 

Succeeding terms are 

(7) i& - e \ + ^ - - 2) - 1 , 

(8) L<» = LW> + ( 2 n + 1 - n - 2) - (1 + 3) , 

W T ( 4 - T (n) + . . . + T (n) 
n+i 

In general, the second sequence follows the recursion formula 

(10) l i n ) = lin> + L ? > + • . . + L[n) (k > n + 1) 
v ' k k-i k-2 k-n v ' 

It is interesting to note from (7), (8), and (9) that at least one term of the 
first sequence appears directly in the summation for L ) ' for n ^ k ^ 2n„ 
After k > 2n, the influence of the first sequence is reduced. 

3. PARTITION CALCULATION OF SEQUENCE TERMS 
fn) Several methods are available for finding a particular L) ; . One method 

is the direct use of recursion formulas. Another is to solve the n order 
difference equation for the second sequence subject to the n conditions (or 
their equivalents) imposed by the first sequence. A. third method, discussed 
herein, is to assume that desired partitions of n are available and to use them 
as a combinatorial means of finding the L ) . 



1967] BY PARTITIONING OF NUMBERS 323 

In Chrystalfs [3] notation, P(kppq) is the number of p-part part i -
tions of k, no member of which exceeds qe If the original value of q ex-
ceeds k + 1 - p, it can be replaced by q = k + 1 - p since there are the 
same number of partitions for q = k + 1 - p as for q ^ k + 1 - p„ However, 
for q < k + 1 - p it is obvious that less than P(k|p|<k + 1 - p) partitions 
exist. Suppose, now, that desired partitions can be called up at will and are 
available from this point on. The actual set of such partitions which have the 
same limitations as the enumeration counterpart is given the terminology 
PV(k|p|<q). 

If any S, of Table 1 is stripped of all terms except subscripts and super-
scripts (exponents) of the numerator a?s, there remains the conventional 
representation of all the partitions of ka The partition representation for 
k = 6 is exemplified in Table 3. It is seen that, in general, p ranges from 
k to 1. The quantity k • (p - 1)! divided by the product of the factorials of 
the exponents of a particular combination yields (neglecting sign) the numerical 
part of the contribution of that combination to S, . To illustrate, if k = 6, 
p = 3, the numerical coefficient associated with the partition 23 = 2,2, 2, is 
(6 x 2! )/3l = 2, This well-known result employs much the same reasoning as 
finding a coefficient of a multinomial expansion. The numerical coefficients 
for k = 6, n = 6, and the total 63 = iA ' are given in Table 3. Thus, 
once the exponents are found from the available partitions, iA ' follows. 

Table 3 
Pa r t i t i on 

Representa t ion 

I 6 

I 4 , 2 
' I 3 ,3 

12,22" 

124 

1 ,2 ,3 

23 

1,5 
24 

32 

6 

1 , 1 , 1 , 1 , 1 , 1 

1 , 1 , 1 , 1 , 2 

1 , 1 , 1 , 3 

1 , 1 , 2 , 2 

1 ,1 ,4 

1 ,2 ,3 

2 , 2 , 2 

1,5 

2 ,4 

3 ,3 
6 

PV(k[p|<q) 

PV(k|p|<q) 

PV(6|5|<2) 

PV(6|4j<3) 

PV(6|3J<4) 

PV(6|2|<5) 

PV(6ll |<6) 

Numer i ca l 1 
Coefficient 

(6 x 5! ) /6 ! = 1 

(6 x 41 ) /4 ! = 6 

(6 x 3! ) / 3 ! = 6 

(6 x 3 ! ) / ( 2 ! x 2!)' = 9 

(6 x 2! )/2.T = 6 

(6 x 2! ) / l = 12 

(6 x 2] ) /3 j = 2 

(6 x l j ) / l = • 6 

(6 x l ! ) / l = 6 

(6 x 1! )/2.f = 3 
(6 x O ! ) / l = 6 

Total = 63 
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As long as k ^ n, the sum of numerical coefficients obtained from the 
PV(k p ^ k + 1 - p)!s is the desired iS '. When k > n, the a terms with 
subscripts greater than n are zero. Since the corresponding products with 
numerical coefficients are zero, these numerical coefficients are not used. 
The elimination of these numerical coefficients is accomplished by limiting q 
to 1 < q < n and using only those partitions which result. Table 4 gives an 
example of this situation k = 6, n = 20 

Table 4 

Partition 
Representation 

l 6 

14,2 
12,22 

23 

1 ,1 ,1 ,1 ,1 ,1 
1,1,1,1,2 

1,1,2,2 
2,2,2 

None 
None 

PV(k|p|q) 

PV(6|6|1) 
PV(6|5|2) 
PV(6|4|2) 
PV(6|3|2) 
PV(6|2|2) 
PV(6|1|2) 

Numerical 
Coefficient 

1 

6 

9 

2 

0 

0 

Total =18 

The above methods have been successfully applied to digital computation of 
electrical network problems [4] in which the a coefficients had values other 
than ±1 and in which it was necessary to consider the signs of the resultant 
numerical coefficients, 
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