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1. INTRODUCTION

A group will be called n-circularly generated if it has a set of n(>3)
generators Xy, Xp *ct, X such that XX 0T X, for all i, where the
addition of subscripts is modulo n. This notion was suggested to the author

by a problem in the American Mathematical Monthly [1], which canbe phrased

as follows: Show that a 5-circularly generated group is cyclic of order 11. The
problem of determining the structure of circularly generated groups in general
appears formidable. They are not all abelian, for the fanm.iliar quaternionic
group [ 2, p. 8] clearly has this property for n = 3. Furthermore, if we don't
insist that the generators all be distinct, any dicyclic group is 6-circularly
generated with generators S, T, ST, s™1 ¥ ™7 and ST, in the notation
of [2, p. 7]. However, the structure of circularly generated abelian groups
can be completely determined, as will be shown below. ‘
It should be observed that an n-circularly generated group on Xy, X,
T X is clearly generated by x; and x,, so if it is abelian, it must either
be cyclic or the direct sum of exactly two cyclic subgroups. Furthermore,
any circularly generated abelian group is the homomorphic image of an abelian
group for which the circular relations are defining relations, so we will con-
fine our attention to that case.
Henceforth (G,+) will denote an abelian group with generators xi, Xy,

T X and defining relations*

(1) X, + X. =X, , i=1,2, -, n .

where addition of subscripts is modulo n.
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*G is isomorphic to F/N, where F is the free abelian group on n generators
tis tz: ceeut
b+ by~ by
that all relations in G are consequences of the given relations (1).

36

n and N is the subgroup generated by all elements of the form

under the correspondence Xi<_>ti + N. This means -‘simply
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The orders of the cyclic summands of G turn out to bevarious Fibonacci
and- Lucas numbers. We denote by Fm (respectively, Lm) the mth Fib-
onacci (Lucas) number, with the usual initial conditions Fy = 0, L, = 2, Fy
= Ly = 1. Then the results to be proved below maybe summarized as follows:

Theorem 1. If 4|n, then G is the direct sum of two cyclic subgroups,
one of order Fn/z’ the .other of order 5 Fn/z .

Theorem 2. If 2|n and 4fn, then G is the direct sum of two cyclic
subgroups, each of order Ln/z'

Theorem 3. If Zj’n and 3|n, then G is the direct sum of two cyclic
subgroups, one of order 2, and the other of order %Ln.

Theorem 4. If (n,6) = 1, then G is cyclic of order Ln'

Note that the direct sum of cyclic groups of orders k and m is itself
cyclic of order km if and only if (k,m) = 1. It follows that the only cyclic
group included among the first three cases is that for n = 4, since Fy =1
(see (10) below). The first eight cases in which G is cyclic are those for
which n = 4, 5, 7, 11, 13, 17, 19, 23, and the corresponding orders are
5, 11, 29, 199, 521, 3571, 9349, 64079. These numbers are all prime except
the last, which is 139 times 451. Thus, the smallest cyclic group G in our
list whose order is composite is the one for n = 23.

We also observethat every Fibonacci number with even subscript appears
among the cyclic summands in Theorem 1. Given any integer m > 2, m di-

vides F where k is the period of the Fibonacci sequence modulo m, and

k’
k is even [ 5, Corollary to Theorem 1 and Theorem 4]. Hence a cyclic group
of order m is ahomomorphic image of at least one of the groups listed above.
For m = 2, we can take one of the groups of Theorem 3.

Corollary. Every finite cyclic group is n-circularly generated for some

n.
2. SOME FIBONACCI AND LUCAS RELATIONS FOR REFERENCE
(2) F o, " F ., =3F .
3) F o~ F g = 4F .
(4) F - F = L
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(5) Fo+F =L -

(6) Fows™ Froy = Fr,t2F .
(7 2F ., - Fo o =5F, .

(8) 3F g ¥ T = 2F 4,

9) If 3|m, then 2|Fm .

(10) If 3|m, 2[111, then 4ILm“

(11) 2F F o+ Finﬂ = Lo+ o

(12) 2F F - F2 = Lomut o

Relations (2) — (10} are easy, and for the most part well-known, conse-
quences of the definitions, Relations {11) and (12) maybe new; their proofs are

left as exercises for the reader.

3. A REDUCTION OF THE PROBLEM BY MATRICES

The defining relations for G may be written in matrix form:

Axt =0,
where x = (Xy,Xg,°°°,Xy) and
1 1 -1 0 -«oee 0
0 1 1 -1 0 o060 O

A=1o eoe 01 1 1
“1 0 ee» 0 1 1

1 -1 0 ce- 0 1

The relation matrix A can be reduced via elementary row and column opera-
tions-(over the integers) to aform from which one can read off the structure of
G as a direct sum of cyclic groups [3,4]. Rather than apply the standardpro-

cedure for this, we make some observations about the matrix A. By adding
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suitable multiples of each of the first n - 2 rows to the last two rows, we can

reduce A to a matrix of the form

B 1
(13) —_— ,
a b
0 c d

where B isthe (0 - 2) by n matrix consisting of the first n - 2 rows of A.
In this form, it is clear that G is generated by X 4 and X subject to the
relations

a b\/x
n-1
(14) <c d)(x ) =0,
n

and that an expression for each of the other x's in terms of these two can be

read off from the matrix (13):

e = % T Faor Fnog T Faot T Fpee T P T %y o
etc. Thus, it suffices to determine the integers a, b, ¢, d and the structure ‘
of an abelian group with relations (14). Observe that row operations involving
the first n - 4 rows of A do not affect the last two columns.

Lemma 1, After reducing the first k columns of A to zero below the

diagonal (0 € k< n-4, thelasttwo rows of A have the form:

0eee 0 (—1)1““1?1{+1 (_1)ka 0 «es 011
k k+ 0 001 °
000 0 (VF  DEME 0.

k n-k-4

The proof is by induction on k. Simple induction proofs of this sort will
be omitted.
In particular, after n -4 column reductions, the last four rows and

columns of (the new) A have the form:
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r 1 1 -1 0
0 1 1 -1
(15) n+i n .
COMTE o CDE 11
n n+i
V', “0™F 0 1

Lemma 2, After n - 2 column reductions, A is reduced to the form
(13), where a=d=1+D"F , b=1+¢D"F ,, and c = (1"F .

Proof. Use the obvious row operations to reduce the first and second
columns of (15) to zero below the diagonal,

For each of the cases in Theorems 1-4, we will use elementary row

operations to reduce the matrix of (14) to one of the forms

P 0 kr r
(16) (kr r)’(p 0)’

where p,r,k are integers. Then it is clear that G is the direct sum of the

cyclic groups generated by X and x_+ kxn_ and that these have orders

-1 v
lp! and |r}, respectively, In particular, G is cyclic when l rl = 1.

4, THE STRUCTURE OF G FOR EVEN n

Henceforth we will write each relation involving X and X by writing
only the two coefficients. Thus, we have reduced the problem to the pair of

defining relations (with the order reversed from that given above):

n n-+i
R1 D' F 1+ (-1) L

R 2 1+ )" 1+ D F .

n-1 ° 2

For each k > 2, define the relation Rk to be the sum of the relations
R(k - 1) and R(k - 2). Then one verifies by induction the general form

Rk F 1+(_1)n‘k'1F ,Fk+(_1)n'kF

k- n-k-+1 n-k °
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Clearly, any two consecutive ones of these relations are defining relations for
G.
First, supposethat n = 4q, and let m = 2g. Then we have the defining -

relations
R(m - 2) Fm—3 - Fm+3 , Fm_2 + Fm+2
R(m - 1) : Frne " Fmes 0 Frg " Finyg

Using (2) and (3), we rewrite these as

R(m - 2) -4F , 3F
m m
R(m - 1) 3F. , -F_ .
m m

Add 3 times R(m - 1) to R(m - 2), and we have the relation matrix

3F -F
m m
< 5F 0 )
m
in the form (16), which completes the proof of Theorem 1.

Now suppose n = 4q + 2, and again let m = 2q. Referring againto the

general form for the relation Rk, we have defining relations

Rm Fm—i - Fm+3 ’ Fm + Fm+2

R(m +1) Fm+Fm+2 , F

°

m+ " Tm

Using (4) and (5), we have the relation matrix

( 'Lm+1 Lm+1>
Lm + 0

in the form (16), which completes the proof of Theorem 2.

5, THE STRUCTURE OF G FOR ODD n

The proofs of Theorems 3and4 appear to require separate consideration

of six cases, depending on the congruence class of n modulo 12,
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Casel. Let n = 12g+1 and m = 6g. Referring again to Rk in the

previous section, we have the defining relations

R(m - 1) Fo,-Foe B+ F
Rm Fm—i * Fm+2 ? Fm - Fm+1 .
Use (3) and (6) to rewrite these as

R(m - 1) -2F - F ., 5F  +F_
Rm Fm—i + Fm+2 . —Fm—l

We ignore the relations Rk for k > m and define R(m + 1) by adding 5 times
Rm to R(m - 1):

R{m + 1) ' 3F + 4F , F o

For k > 1, define R(m + k) by adding 4 times R(m +k - 1) to R(m +k - 2),

One obtains by induction (using (3)) the general form:
k-+1
R(m + k) Ficr1 Fmo1 + 4 Fskts Fmtes 1) Fm-gk-1.
In particular, for k = 2q - 2 and 2q - 1, we have the defining relations

R(8q - 2)
R(8q - 1)

F1rn—5Fm-1 * ’}Fm—s Fm+2 » =5

m—sz—i * %FmFmﬂ ? 1

Add 5 times R(8q - 1) to R(8q - 2) to get a matrix of the form (16) with r =

1. Hence G is cyclic of order.

(F + 5Fm )F

1
s ) g + §(F + 5F_)F

m-3 m°T m-2

2
2 Fm Fm—i * Fm+2

L2m+1

L .
n

1
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{(Formulas (7) and (11) were used here, )

CaseIL. Let n = 12q + 5 and m = 6g + 2. This leads tothe same equa-
tions R{m - 1), Rm, and R{m + k) as in Case I. In particular, for k = 2q
-1 and 2q, we have

R8q + 1) Fm—-4 }jm-i * %Fm—z Fm+z ?

2 -
R(8q + 2) ot «}Fmﬂ Foity 2 1

As in Case I, this leads to a cyclic group whose order (using (8) and (11)) is

¥ + 3Fm_ )Fm_1 +?L(an2 + 3F

¥
m-4 1

m+1T m-+2

= 2
2F1’!l—1 Fm N Fm+2

= Lom+1

= L °
n
Case L. Let n = 129~ 5 and m = 6g - 3. Fromthegeneral form Rk
we have relations

Rm

Fm~1 - Fm+2 ?

R{m + 1) Fm+2

For k > 1, R{m +k) is defined to be R{m + k - 2) minus four times R{m -

k - 1). Using (3) and induction on k, we have

k

' - K+
R(m + k) L—%)— Fak-3Fpog + 17 Fsk1Fm+2 » Fm-skts -

In particular, for k = 2q - 2 and 2q - 1, we have

1
R(8q - 5) YFm—-GFm% = ety

R(8q - 4) -%Fm_SFm_i + Py Fmez » 1 .
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Again G is cyclic, and the order Ln is computed as in Case I, using (12) in-
stead of (11).

CaseIV. Let n = 129-1 and m = 6q - 1. Then relations Rm, R(m
+1), and R(m + k) are as in Case Ill. For k = 2q - 1 and 2q we have

1
R(8q -2) -4F F  FEF

R(8q - 1) iF A

F + F F
m-2  m-i m  mt

Again G is cyclic of order Ln’ using (8) and (12) as in the previous cases.

This completes the proof of Theorem 4.

CaseV. Let n =129 +3 and m = 6g + 1. The relations Rm, R(m +

1), and R(m +k) are the same as in Case IIl. For k = 29 and 2q +1, we

have
R(8q - 1) i Fm—4 Fm—i - Fm—z Fm+2 » 2
R(8q + 2) -$F2 +F _F , 0 .

m-1 m+1 "~ m+2

By (9), the first entry in R(8q + 1) is even, hence we have amatrix of the form
(16) and G is the direct sum of two cyclic groups, one of order 2, the other
(by 2) of order 4 Lyy4+q = %Ln .

Case V. Let n = 129 -3 and m = 6q - 2. Then we have the same

relations as in Case . For k = 2q - 2 and 2q - 1, we have

R(8q - 4) Fm_3 Fm—1 * akFl’n—iFn’l‘FZ » 2
2
R(8q - 3) F mei + «}Fm+2 , 0 .

As in Case V, this leads to the direct sum of a cyclic group of order 2 and

one of order ;}Ln, which completes the proof of Theorem 3.
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6. A FURTHER CONSEQUENCE

Itis easyto verifythat the second entries in each of the relations appear-
ing in each reduction process above are, except for sign, the remainders in
the Euclidean Algorithm, applied to the two entries of relation R1. Thus the
smallest non-zero entry appearing is their greatest common divisor.

Corollary. If n is even, then

(F ,F -1 = npe T4
Ln /a? otherwise .

If n is odd, then

2, if 3'n

(Fn’ Fn—i+ n = 3 1, otherwise .
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