(26s)

$$
\sum_{i=1}^{n} O_{i+1} L_{i}=\frac{1}{64} \quad\left[3^{2 n+3}+8 n+24(-3)^{n}-51\right] \quad(\lambda=3)
$$

$$
\begin{equation*}
\sum_{i=1}^{n} 2^{2 i} F_{i+1} L_{i}=\frac{4}{5}\left[2^{2 n} L_{2 n}-3+(-4)^{n}\right] \tag{26'}
\end{equation*}
$$

REFERENCE

1. cf. N. N. Vorob'ev, Fibonacci Numbers, pp. 15-20.
(Continued from p. 369..)
Let the function h be defined by $h(s, t)=(3 s+4 t, 2 s+3 t)$. Using the method employed above, prove that all solutions in positive integers of Eq. (3) are given by

$$
\begin{equation*}
\left(s_{n}, t_{n}\right)=h^{n}(1,0), \quad n=1,2,3, \cdots \tag{17}
\end{equation*}
$$

To be continued in the February issue of this Quarterly.
[Continued from p. 384.]
according to the principles of a highly sophisticated harmonic system based on the canon of proportion of the Fibonacci Series: the system may yet prove to underlie other disparate aspects of Minoan design. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ As it does design of structures elsewhere in the Aegean contemporary or later than Minoan palatial construction. There is evidence that the 1:1.6 ratio was employed in design previously in the Early Bronze Age in Greece and western Anatolia (disseration, loc. cit.).

