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H-166 Proposed by H. H. Ferns, Victoria, B. C, Canada. 

Prove the identity 

F 2mn i n 
l(°>' F . if m is odd 

m mi 

Y\ (-1) V F . if m is even , 
— m mi 
i= l 

where F and L are the n Fibonacci and n Lucas numbers, respectively. 

H-167 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Put 

00 

Sk = £ F~F~~T - n n+k n=l 

Show that, for k ^ 0, 

2 k k - [ | ( n - l)] 
( A ) F 2k + 2 S 2k + 2 = k + 1 " E F F 9 

n=l n n + 2 

74 
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2k-l k - [§| 
(B) F o l r ± 1 S O I _ , = Si - k + V L ^ J 

' 2k+l 2k+l * £JL F F l 0 
n=0 n n+2 

where £aj denotes the g r e a t e s t Integer function. 

Special c a s e s of (A) and (B) have been proved by Bro the r Alfred Brousseau , 

"Summation of Infinite Fibonacci S e r i e s , n Fibonacci Quar t e r ly ; Vol. 7, No. 2 , 

Apr i l , 1969, pp. 143-168. 

H-168 Proposed by David A. Klarner, University of Alberta, Edmonton, Alberta, 
Canada. 

If 

a . . (Vi;') 
for i5 j = l , 2 , - " , n , show that d e t { a . . | = 1. 

SOLUTIONS 

GENERALIZE 

H-137 Proposed by J. L. Brown, Jr., Ordnance Research Laboratory, State College, 
Pennsylvania. 

GENERALIZED FORM OF H-70: Consider the se t S consis t ing of the 

f i r s t N posit ive in tegers and choose a fixed in teger k satisfying 0 < k<^ N. 

How many different subse ts A of S (including the empty subset) can be 

formed with the p rope r ty that af - a" ^ k for any two e lements a? , aT? of A; 
that i s j the in tege r s i and k + k do not both appea r in A for any i = 1,2, 

• • • , N - k. 

Solution by the Proposer. 

Let N = r (mod k) so that N = tk + r with t a posi t ive in teger and 

0 <: r < k - 1. 

Each subse t A of S can be made to cor respond to a b inary sequence 

{ai9a2,ad9
B • • , a ' N ) of N t e r m s by the ru le that a. = 1 if i E A and a. = 

0 if i (J A. F o r a given subset A and i t s cor responding b ina ry sequence 

(ai$ aZ9 • • • , o ^ ) , define k b ina ry sequences a s follows; 



76 ADVANCED PROBLEMS AND SOLUTIONS [Feb, 

A l 
A 2 

A r 

= (av « 1 + k . « 1 + 2 k » 

= (<V < W a2+2k' " 

r r+k r+2k 

"•'CW 
' " ' a2+tk) 

••-'ar+ik) 

Ar+1 " (ar+l' ar+l+k' ° r+l+2k' '" ' ar+l+(t-l)k) 

A k = (Vff2k'a3k'""'flftk) 

Then the subset A corresponding to (c^, a2, • •• , o>-^) satisfies the given con-
straint if and only if each A independently for m = 1,2,* °• ,k is a binary 
sequence without consecutive l f s . But it is well known that the total number of 
binary sequences of length n without consecutive I s is F 2 . Since each of 
the r sequences A- , - -« ,A has length t + 1 and each of the remaining 
k - r sequences A - ,• • • ,A, has length t, it follows that the total number 

r k—r of subsets with the required property is F +o F, _2 • 

Also solved by M. Yoder. 

FIBONOMIALS 

H-138 Proposed by George E. Andrews, Pennsylvania State University, University 
Park, Pennsylvania. 

If F denotes the sequence of polynomials F* = F2 = 1, F = F 1 + 
x " F 2 , prove that 1 + x + x2 + • • • + xp~ divides F +- for any prime 
p = ±2 (mod 5). 

Solution by L. Carlitz, Duke University, Durham, North Carolina. 

Let c£> (x) denote the cyclotomic polynomial: 

d>n(x) = n (xr - if(s) 

rs=n 

where JJL(S) is the Mobius function. We shall prove that F +- is divisible by 
<i> (x) if and only if n = ±2 (mod 5), where n is an arbitrary positive integer 
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(not n e c e s s a r i l y p r ime) . Indeed, we obtain the res idue of F - (model) (x)) 

for a l l n. In pa r t i cu l a r , we find that 

F n + 1 = 1 (mod <Dn(x) ) 

when n = ± 1 (mod 10). 

L Schur (Ber l iner Si tzungsberichte (1917), pp. 302-321) has proved that 
if 

Ft = F 2 = 1, F ^ = F _,, + x n F (n > 1) , 
1 L n+2 n+1 n — * 

then 

(1) 

where 

Fn+1 Xr
 { 1] X Le(k 

e(k) j"|(n + 5k)l, r = |"4(n + 2)1 

and 

/i n W l n - 1 , ,_ n-k+lx 
iL—S~JA - x ) - - (i - x ) ( 0 ^ k < n ) , 

T n l = ) (1 - x) ( l - x 2 ) . . . (1 - xK) 

(otherwise) 

r n l 
I, i s a polynomial in x with posi t ive in tegra l coefficients: a lso it i s evident 
from the definition that for \<L k ^ n , P i s divis ible by the cyclotomic 

polynomial <t> (x). 

Thus (1) impl ies 

»'.+i-«-«r^,B"iT.w]+<-i»r^"r,l ,[.<y * - * . « ) • 



78 ADVANCED PROBLEMS AND SOLUTIONS 

The following table is easily verified. 

n r e(r) e(-r) 

[Feb. 

10 m 

l O m + 1 
10 m + 2 

1 0 m + 3 

1 0 m + 4 

10 m + 5 
1 0 m + 6 

1 0 m + 7 

1 0 m + 8 

1 0 m + 9 

2 m 

2 m 

2 m 

2 m + 1 

2 m + 1 

2 m + l 

2 HI + 1 

2 HI + 1 

2 m + 2 

2 m + 2 

10 m 

10 m 

1 0 m + l 
10 m + 4 

10 m + 4 

1 0 m + 5 

1 0 m + 5 

10 m + 6 

10 m + 9 
10 m + 9 

0 

0 

1 
- 1 

- 1 

0 

0 

1 

- 1 
- 1 

Therefore, making use of (2), we get the following values for the residue of 
F n + 1 (mod <t>n(x) ): 

residue of F , - (mod <i> (x) ) 
n+i n 

10 m 

l O m + 1 

1 10 m + 2 

1 10m + 3 

1 0 m + 4 

1 10 m + 5 

10 m + 6 

j 10 m + 7 

10 m + 8 

10 m + 9 

m ( 1 0 m - l ) , m(10m+l) 9m ^ m 
x x + x ' = x + x 

m(10m+l) -x = 1 

o 1 
0 

(2m+l) (5m+2) _ 5m+2 

(2m+l)(5m+2) (2m+l)(5m+3) _ 4m+2 6m+3 
—X — X — ~X — X 

(2m+l)(5m+3) _ 5m+3 
•—X zz ""X 

0 

0 

(m+l)(10m+9) _ -
X =• X 

As a check, we compute F - , 2j£ n £ 10, and the corresponding 
residues, 
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n 1 F ^i 

n+1 
2 

3 

4 

5 

6 

7 

8 

9 

1 +x 
1 + X + X2 

1 + X + X2 •+ X3 + X4 

1 + x + x2 + x3 + 2x4 + x5 + x6 

1 + x + x2 + x3 + 2x4 + 2x5 + 2x6 + x7 + x8 + x9 

1 + x + x2 + x3 + 2x4 + 2x5 + 3x6 + 2x7 + 2x8 + 2x9 + 2x10 + x1 1 + x12 

1 + x + x2 + x3 + 2x4 + 2x5 + 3x6 + 3x7 + 3x8 + 3x9 + 3x10 

+ Sx11 + 3x12 •+ 2x13 + x14 + x15 + x16 

1 + x + x2 + x3 + 2x4 + 2x5 + 3x6 + 3x7 + 4x8 + 4x9 + 4x10 + 4X11 

+ 5x12 + 4x14 + 3x15 + 3x16 + 2x17 + 2x18 + x19 + x2 0 

79 
res idue 

(mod <I>n) 

0 

0 

1 = -x2 

-X2 - X3 

1 = -X3 

0 

0 

1 

Remarks, 1. If we use the fuller notation F (x) in place of F and € 
denotes a primitive n root of unity, then the statement F -(x) is divisible 
by <t> (x) is equivalent to F - (c) = 0. Using the recurrence for F , it is 
not difficult to show that, for n odd, 

F^(«) = K(n+3)(*)2-|^(n_1)(e)|2 > -n+r 

while for n even, 

Fn+1<€) = | * W e ) | 2 + e " k I F k < £ ) | 2 <n = 2k) 

2. In the next place, it follows from the recurrence that 

(3) 2 Fn+laI1 " £ \ f 
n=0 

oo 2k k2 
x 

k=0 W 

where 

(a)k = (1 a)(l - ax) • • • (1 - ax ) . 

Since 
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fc-£[k!V 'k r=0 

we get 

& f ; k]' k
2 

Fn + 1 = 1 ; i " r_ - ix k 

2k<n 

If we take a = x in (3), we get 

k2 00 . _ . . - 1 . . . . . - 1 

fer = n 

n =l k=0 K'k n=0 

1 + ] L F
n

x = L - ^ ) - = n ( i - x ) a - x ) 

by the first Roger-Ramanujan identity (see, for example, Hardy and Wright, 
Introduction to the Theory of Numbers, Oxford, 1954, p. 290). 

Incidentally, if 

Gi = G2 = 1, G n + 1 = Gn + x n Gn_1 (n > 1) , 

ther 

(4) 

1 we have 

n=0 

00 2 k k 2 +k v* a x 

and 

£.[V* Gn+1= 2- r . . - i ^ k 
11+1 2k<n 

If we take a = x in (4), we get 
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1 , r n f> x k 2 + k « 5n+2 - 1 , , 5n+3 " 1 

1 + G n x = £• -̂ yr = V } (1"x ) 

k=0 'k n=0 

by the second Rogers -Ramanujan identity* 

INTEGRITY 

H-140 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia. 

F o r a posi t ive in teger m , let a = a(m) be the l e a s t posi t ive in teger 

such that F = 0 (mod m) . Show that the highest power of a p r i m e p dividing 

F i F 2 - - - F n is 

00 r-

k=l 

where [x ] denotes the g r e a t e s t in teger contained in x, Using t h i s , show that 

the Fibonacci binomial coefficients 

[-] 
F F • • • F m m - 1 m - r + 1 

F - F 0 • • • F 
1 2 r 

(r > 0) 

a r e i n t ege r s . 

Solution by the Proposer. 

It i s known [ D . D. Wall , "Fibonacci Se r i e s M e d u l o m , " Amer . Math. 

Monthly, 67 (1960), 525-532] that F = 0 (mod m) if and only if r = 0 (mod 

a(m)). Then the number of F with r < n which a r e exactly divis ible by p 

is [ n / a ( p ) ] , es tabl ishing the f i r s t p a r t Note that a(p ) - * ©o a s k-*©o, so 

for fixed p this is actual ly a finite sum. 

Now le t (m) = F - F • • • F . Then 
x u m 

m (r).'(m - r ) ! 
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It suffices to show that for any prime p , the highest power of p dividing the 
numerator is not less than that dividing the denominator. By the first part, 
this is equivalent to 

<*> £ r^vi * £ f-r-i+ £ r ^ l • 
k=l L a(V

K) J k=l L a(pK) J k=l L a(pK) J 

But the elementary inequality [x + y] 2: [ x ] + [y] shows that 

implying (*) and the result. 
Also solved by M. Yoder. 

* • - • • * 

[Continued from page 30. ] 
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JUST OUT 
by Joseph and Frances Gies 

A new book---Leonardo of Pisa and the new mathematics 
of the Middle Ages-—concerning our Fibonacci- Thomas Y. 
Growell Company, New York, 1970, pp, 12? —*3-95-


