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H-169 Proposed by Francis DeKoven, Highland Park, Illinois. 

Show n2 + 1 is a prime if and only if n ^ ab + cd with ad - be = ±1 
for integers a, b , c, d. 

H-170 Proposed by H. W. Gould, West Virginia University, Morgantown, West Virginia. 

Define the power sequence P to be the sequence of natural numbers 
which are perfect powers m , r > 1, arranged in increasing order of mag-
nitude. Define the first term in the sequence as Pi = 1. Then P = 1, 4, 8, 
9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, • • • . Find a formula for 
the n term, P , of the power sequence. Determine the asymptotic be-
havior of P . Define i//(n) to be the number of terms in the power sequence 

»^p and relatively prime to p . Then the consecutive values of i//(n) are 
1, 1, 3, 2, 5, 5, 4, 2, 9, 5, 8, ••• . Find a formula for i/i(n) and determine 
the behavior of this function <//. Find suitable generating series for p and 
i//(n). Finally, find a formula for the n non-power; i. e. , for the n term 
in the sequence complementary to P. Note: It may, or may not, be a good 
idea to include Pj = 1 in the sequence defined above. 

H-l 71 Proposed by Douglas Lind, Stanford University,, Stanford, California. 

Does there exist a continuous real-valued function f defined on a com-
pact interval I of the real line such that 
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f f (x) n d x = F . J n 

What if we r e q u i r e f only be m e a s u r a b l e ? 

SOLUTIONS 
SUB MATRICES 

H-139 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Put 

A = n 

n+1 

n+k-1 n 

F n + 1 F n+2 

F n-te-1 
rnH4?:-l 

M = 

A mk 
A n + ( m - l ) k A n 

n+k n+2k 

A 
n+(m- l )k 
n+(m-2)k 

Evaluate det M. 
F o r m = k = 2 , the p rob lem reduces to Hr-117 (Fibonacci Qua r t e r ly , 

VoL 5, No. 2 (1967), p . 162). 

Solution by the Proposer. 

Put € = e 2 7 T i / k
9 co = e27Ti/m and define 

P = (€13) ( i , j = 0, 19 - ' 9 k - 1) , 

rs . U = (to P) ( r s s = 0, 1, • • • , m - 1) 

Also put 

M = CB J ( r } s = 0 , l 9 " M i i - l ) , 
i ~"0 
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where BQ» BJ , ' • • , B - are arbitrary square matrices of order k and 
B _, = B . Then r+m r 

MU = f E 3B
r-t

a>tSp ' = Yk- ts r s ^ a 
0) °0> P 1 , 

Since 

UMU = [ P E ^ U > P | 5 
u , t 

m-1 
E ^u(r+s) 

u=0 

J m (m I r + s) 
( o (m | r + s) , 

it follows that 

m-1 
|UMU! = n 

s=0 
p(E B ^ J P 

. l 0 m-1 
| p | 2 m n 

s=0 

m-1 
E BtoT 
t=0 

ts 

On the other hand, 

so that 

u2 = ( £ Jr+S)tv* 
) • 

| u 2 | = - . m L | 2 m m P 

Therefore, since | P | £ 0, 
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(1) |M| = 
H l - 1 

n s=0 

m-1 

E 
t=0 

Btco ts 

Now take 

t n+tk (t = 0, 1, • • • , m - 1) 

Then 

(2) 
m-1 

t=0 

ts 
m-1 

= E A 
t=0 

ts 
n+tku 

We shall limit ourselves to the case k = 2, so that 

*. • [ c Fc] • >- c : 
Then 

n F ^ F - * 
L n+2 n - l j 

/m-1 
E A 

,t=0 
n^"'8) * - [ SFn+2t+2a> S Fn+2t-

t s i 

so that 

(3) 
m-1 
£ A. 
t=0 

n+2t £0 -ts 
1-1 

^ Fn+2t+2: 

t=0 
CO ts 

fm~l 

t=0 
-,w ts.1 

n+2t-l 
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Now 
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m-1 

t=0 

ts 
n+2t a) a - p 

F 

_n 1 - a 2 m „n l - f f 2 m 

1 - crco 2 s ^ 
1 - j t f |2

 S 

F - (F - F )(u 
n n+2m v n-2 n+2m-2 ; w 

(1 - <AoS)(l - pa?) 

and 

m-1 
n 

s=0 

m-1 
.ts n £ F ...oi- = 

( F n " Fn+2m) " ( F n-2 " Fn+2m-2) 

n+2t 
t=0 2 - L 2m 

It therefore follows from (l)f (2), and (3), that 

M = (-D m 

<L2xn " 2> 
(F - F ) m - (F - F ) m 

2 i n+2 n+2m+2; v n n+2m/ 

. l /xp F \^i , F F vml 
r n-1 " n+2m-2' " v n-3 * n+2m-3' 

It can be verified that when m = 2, the right member reduces to 
F 2 +6F2 i n a S r e e n i e n t w i t ^ H-117. 

The result for arbitrary k is presumably very complicated. 

SUM DIFFERENCE 

H-141 Proposed by H. T. Leonard, Jr., and V. E. Hoggatt, Jr., San Jose State College, 
San Jose, California. (Corrected Version) 

Show that 

(a) 
F 0 + 2 F 2n n 

h \ 2k + l)L2(n-
=0 ^ ' 

= L (2k+l)r 2k+l 
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(b) 
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fn-ll 
LQ - L 2n n 

k=0 
° ) 

k + II 
2k + l/-"2k+l 

273 

(c) 
LQ + L 2n n = £ 

k=0 
( ; > '2k 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Let a ^ 13 he the roots of z2 - z - 1 = 0 (a > /3) 
(b) and (c). We have 

n , [n /2] [tn-D/2] 

a) a + x)n = E nW 
i=0 ^ ' 

= E (2k)x2k+ E (2kn+iV 
k=0 \ / k=0 \ ' 

2k+l 

Since L = a + p , 1 + # = a2 (also for /3)? we add (1)9 for x = a, to (1) 
for x = jS to obtain 

(2) J2n 

[n/2] 

E / n 

k=0 
2 k | L 2 k + 

[(n-l)/2] 

E ( 2k + l ) 2k + 1 r ^ k + l 
k=0 

Since or + 0 = 1, we obtain, by addition of (1), for x = -or, to (1)? for x 

(3) 
[n/2] ^ 

L n = E I 2 k L2k 
k=0 

[(n-l)/2] 

E |2k + i r 
k=o V / 

J2k+1 -

Addition of (2) and (4) gives (c); subtraction of (3) from (2) gives (b). 
(a) We have 



274 ADVANCED PROBLEMS AND SOLUTIONS [April 

n 
,n v 1 / n \ 2(n-i) i ) = Z, I J y x 

i=0 ^ ' 

(4) (y2 + x)11 = 

i > / 2 ] 7 x [ (n-D/2] , 
;-l) 2k+l x 

k=0 N ' k=0 

Since F = (an - jS )/(c^ - jS), we subtract (4), for x = /3, from (4), for x = 
a, and divide the result by (a - p) to obtain 

[n/2]/ > [to-1'/2! 

k=0 v ' k=0 

Addition of (5), for y = a, to (5), for y = jS, simplifies to 

[ n / 2 ] , x [ (n -D/2 ] / v 
t y ^ - t t ) n - ( y ' + / 3 ) n _ V [ n \ 2(n-2k) V | n k 

a-p ~ L, U k / y *2k ^ \ 2 k + l P (5) v • - " ' „ - _ % 'H' = L U ; i y a ^ ' F , ^ £ U ^ i ) y 2 ( n _ 2 k _ 1 ) F 2 k + i 

[n /2 ] [(n-l)/2] ^ 
( 6 ) F 3n = ^ l2k)L2(n-2k)F2k + £ ' ( 2k + l ) L 2(n-2k- l ) F 2k+l 

k=0 V ' k=0 V ' 

Subtraction of (4), for x = -/3, from (4), for x = -a, gives 

n [n /2] , v [fo-D/2] 

a - ^ ? - - ^ l 2 k J y F 2 k 
k=0 \ ' 

[(n-l)/2] 
/ n \ 2(n-2k-l)1? 

2k+l 

(7) v-«:-_f-e?= E fiV**Flk- E 
k=0 

v / n \ 2(n-2k-l) 
^ 1 2k + 1 F F2 
k=0 V ' 

Addition of (7), for y = a, to (7), for y = /S, gives 

[n/2] , v [ (n- l ) /2 l . 

(8) - 2 n F n = 53 ( 2 k ) L 2 ( n - 2 k ) F 2 k " £ ( 2k + l ) L 2(n-2k- l ) F 2k+l 
k=0 X ' k=0 \ ' 
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Subtraction of (8) from (6) gives the desired result. 
Also solved by D. Jaiswal (India) and A. C. Shannon (Australia). 

ANOTHER SERIES 
H-142 Proposed by H. W. Gould, West Virginia University, Morgantown, West Virginia. 

With the usual notation for Fibonacci numbers, F0 = 0, Fj =. 1, F -
= F + F 1$ show that 

wit V5 II 1 - VS I " Fn+1 ' 
k / ^ n - k 

where 

h ) = x(x - l)(x - 2) ••• (x - j + l ) / j ! 

is the usual binomial coefficient symbol. 

Solution by L. Carlitz, Duke University, Durham, North Carolina. 
Put 

R - 1 + V ^ = 3 + V 5 _ / l - ^ / * \ 2 

Then 

£ » / • £ ' " £ (f)(a"-f) 
n=0 n=0 k=0 

= £ (fVi: (n + (1
n"^)k)tn = £ ( f V a - t ) - ^ ^ 1 

k=0 N ' n=0 x ' k=0 
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Now in the formula (see Polya-Szego, Aufgaben und Lehrsatze aus der 
Analysis, Vol. 1, p. 126, No. 216) 

00 

£ IT/ ,v _ (1 - 0 x + p 
n=0 x ' 

Hw* = 2L 

where 1 - x + wx = 0, take x = (1 - t) . Then 

*— = t(l - tr = w. 

It follows that 

00 

n=0 k=0 V ' 

i - t a - xm + P = a - txi - w = i.^Dt^ 

so that 

^ V 2 / n i - 1 - t2 

n=0 x i t t 

Therefore 

M \ • ~ Fn+1 * 

ylfoo so/vec? &y D. Jaiswal (India). 
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NEGATIVE ATTITUDE 
H-143 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tennessee. 

(Corrected version) 
Let |Hnj- be a generalized Fibonacci sequence and, by the recurrence 

relation, extend the definition to include negative subscripts. Show that 

( i ) L2j+1 L H(2j+l)k ~ H(2j+l)(n+l)H(2j+l)n " H°H-(2j+l) ' 
k=0 

(ii) L 2 j + 1 Yt H(2j+l)k " H(2j+l)(n+l) " H-(2j+l) " H° + H(2j+l)n ' 
k=0 

n 
(iii) L 2 j £ ( -D k H| j k = (-l)nH2j(n+l)H2Jn + H0H-2j • 

k=0 

and derive an expression for 

(iv) Z ( - 1 ) k H 2jk 
k=0 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Our proof uses the fact that if P(0) = R(0) and AP(n) = AR(n), then 
P(n) = R(n) (where AP(n) = P(n + 1) - P(n)). We note that H_n = (- l)n 

( H 0 L n - H n ) , so that 

( A ) H0L2j+l " H2j+1 " H-(2j+l) 

and 

(B) H0L2. - H2. + H^2j 
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Proof of (i). For n = 0, both sides of (i) are equal by (A). Using the 

A operator, it remains to show that 

( 1 ) L a H an + a = Han+2a " Han <a = * + 1} 

We recall now that 

(2) H ^ = F -H + F 'H ^ , 
m+p p-1 m p m+1 

<3) F
m + i F

m - i - F k - ( - 1 ) m • 

Thus, 

Han+a " F a - l H a n + F a H an+l ' 

and 

(4) L H _, = L F -H + F 0 H ^ , 
v a an+a a a-1 an 2a an+1 

( 5 ) Han+2a " Han = <"* + F 2 a - l ) H a n + F2aHan+l 

By (3), 

F F - F2 = -1 . 
a+1 a-1 *a x ' 

and so 

L F - = F . F , + F2 - = -1 + F2 + F2
 n = -1 + F 0 - . a a-1 a+1 a-1 a-1 a a-1 2a- l 

Thus, (4) and (5) gives (1) and (i). 
Proof of (iii). Both sides of (ii) are equal for n = 0 by (B). Using the 

A operator, it remains to show that 

( 6 ) L c H cn + c = * W * o + Hcn ( c = ai> 
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Proceeding as in the proof of (i), we obtain (6) by noting that L F - = 1 + 
F2c-r 

Proof of (ii). Identical to the proof of (i). 
Derivation of (iv)» Using (5) in my paper, "On Summation Formulas for 

Fibonacci and Lucas Numbers / ' this Quarterly, Vol. 2, No. 2, 1964, pp. 105-
107, we obtain (for x = p = - 1 , u = H , a = 2j, and d = 0) 

n 
(iv) (2 + L 2 J ) £ (~DkH2jk = ( -D n (H ( 2 j ) ( n + 1 ) + H 2 j n ) + H0 + H_2j . 

k=0 

Also solved by A. Shannon (Australia), C. Wall, and M. Yoder. 

[Continued from page 267. ] 

Here H(4> = 3H(2). But H(2e + 2) = 2@H(4). 
This leaves us with the following problems: When do Theorems 3*6 and 

3.7 hold? When does (2) hold? For the special case u ,- = u + u .,, the 
* n+1 n n-1 

theorems hold. A rather incomplete proof is given in [2, Theorem 5] . A 
complete proof is contained in [3] and will be published soon. It would be 
nice if these results could be established by the simple approach of [ l ] . Un-
til then, one must be cautious of any results in [1] . 
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