Juan B. Gil, Michael D. Weiner and Catalin Zara Complete Padovan sequences in finite fields, Fibonacci Quart. 45 (2007), no. 1, 64-75.

Abstract

Given a prime $p \geq 5$, and given $1<\kappa<p-1$, we call a sequence $\left(a_{n}\right)_{n}$ in \mathbb{F}_{p} a Φ_{κ}-sequence if it is periodic with period $p-1$, and if it satisfies the linear recurrence $a_{n}+a_{n+1}=a_{n+\kappa}$ with $a_{0}=1$. Such a sequence is said to be a complete Φ_{κ}-sequence if in addition $\left\{a_{0}, a_{1}, \ldots, a_{p-2}\right\}=\{1, \ldots, p-1\}$. For instance, every primitive root $b \bmod p$ generates a complete Φ_{κ}-sequence $a_{n}=b^{n}$ for some (unique) κ. A natural question is whether every complete Φ_{κ}-sequence is necessarily defined by a primitive root. For $\kappa=2$ the answer is known to be positive. In this paper we reexamine that case and investigate the case $\kappa=3$ together with the associated cases $\kappa=p-2$ and $\kappa=p-3$.

