Juan B. Gil, Michael D. Weiner and Catalin Zara Complete Padovan sequences in finite fields, Fibonacci Quart. **45** (2007), no. 1, 64–75.

Abstract

Given a prime $p \geq 5$, and given $1 < \kappa < p - 1$, we call a sequence $(a_n)_n$ in \mathbb{F}_p a Φ_{κ} -sequence if it is periodic with period p - 1, and if it satisfies the linear recurrence $a_n + a_{n+1} = a_{n+\kappa}$ with $a_0 = 1$. Such a sequence is said to be a complete Φ_{κ} -sequence if in addition $\{a_0, a_1, \ldots, a_{p-2}\} = \{1, \ldots, p - 1\}$. For instance, every primitive root $b \mod p$ generates a complete Φ_{κ} -sequence $a_n = b^n$ for some (unique) κ . A natural question is whether every complete Φ_{κ} -sequence is necessarily defined by a primitive root. For $\kappa = 2$ the answer is known to be positive. In this paper we reexamine that case and investigate the case $\kappa = 3$ together with the associated cases $\kappa = p - 2$ and $\kappa = p - 3$.