John A. Ewell

On the sum-of-divisors function,
Fibonacci Quart. 45 (2007), no. 3, 205-207.

Abstract

For each integer $n>0, \sigma(n)$ denotes the sum of all positive divisors of $n ; b(n)$ denotes the exponent (≥ 0) of the largest power of 2 dividing n, and then $0 d(n):=n 2^{-b(n)}$. For each integer $n \geq 0, q(n)$ denotes the number of partitions of n into distinct parts; and $q_{0}(n)$ denotes the number of partitions of n into distinct odd parts. Conventionally, $q(0)=q_{0}(0):=1$. It is here demonstrated that the composite function $\sigma \circ 0 d$ can be expressed additively in terms of the in terms of the functions q, q_{0}.

