Neville Robbins

A recursive formula for sums of squares, Fibonacci Quart. 45 (2007), no. 3, 230-232.

Abstract

If t si a positive integer and n is a non-negative integer, let $r_{t}(n)$ denote the number of representations of n as a sum of t squares of integers. (Representations that differ only in order of terms are considered distinct.) A vast literature exists that is devoted to this subject. (See [3].)

In [1], Ewell used elementary means to obtain a formula for $r_{3}(n)$ in terms of $q_{0}(n)$, the number of self-conjugate partitions of n. Let the integer $t \geq 4$. In this note, we extend Ewell's result, obtaining a formula for $r_{t}(n)$ in terms of $r_{t-3}(n)$ and $q_{0}(n)$.

