Dale Gerdemann

Combinatorial Proofs of Zeckendorf Family Identities, Fibonacci Quart. **46/47** (2008/2009), no. 3, 249–260.

Abstract

A general combinatorial approach is presented for proving identities of the form $mf_n = \sum_{i \in I_m} f_{n+i}$, where m is a nonnegative integer constant, $n \geq |min(I_m)|$ is an integer, I_m is a set of nonconsecutive integers, and f_n is the Fibonacci number F_{n+1} . The approach involves counting phased square-domino tilings, as in the book *Proofs that Really Count* by Benjamin and Quinn. Furthermore, for each proof of an identity of the form $mf_n = \sum_{i \in I_m} f_{n+i}$, there is a corresponding isomorphic proof of the identity $m = \sum_{i \in I_m} \phi^i$, where ϕ is $(1 + \sqrt{5})/2$.