Jiří Klaška and Ladislav Skula

Periods of the Tribonacci Sequence Modulo a Prime $p \equiv 1 \pmod{3}$, Fibonacci Quart. **48** (2010), no. 3, 228–235.

Abstract

Let the Tribonacci polynomial $t(x) = x^3 - x^2 - x - 1$ be irreducible over the Galois field \mathbb{F}_p where p is an arbitrary prime such that $p \equiv 1 \pmod{3}$ and let τ be any root of t(x) in the splitting field K of t(x)over \mathbb{F}_p . We prove that $\tau^{(p^2+p+1)/3} = 1$. Using this identity we show that the period h(p) of the sequence $(T_n \mod p)_{n=0}^{\infty}$ where T_n is the *n*th Tribonacci number divides $(p^2 + p + 1)/3$. Similar results will also be obtained for t(x) being reducible over \mathbb{F}_p . In this case we prove that the period h(p) divides (q-1)/3 where q is the number of elements of the splitting field of t(x) over \mathbb{F}_p if and only if 2 is a cubic residue of \mathbb{F}_p .