Jiří Klaška and Ladislav Skula

Periods of the Tribonacci Sequence Modulo a Prime $p \equiv 1(\bmod 3)$, Fibonacci Quart. 48 (2010), no. 3, 228-235.

Abstract

Let the Tribonacci polynomial $t(x)=x^{3}-x^{2}-x-1$ be irreducible over the Galois field \mathbb{F}_{p} where p is an arbitrary prime such that $p \equiv 1$ $(\bmod 3)$ and let τ be any root of $t(x)$ in the splitting field K of $t(x)$ over \mathbb{F}_{p}. We prove that $\tau^{\left(p^{2}+p+1\right) / 3}=1$. Using this identity we show that the period $h(p)$ of the sequence $\left(T_{n} \bmod p\right)_{n=0}^{\infty}$ where T_{n} is the nth Tribonacci number divides $\left(p^{2}+p+1\right) / 3$. Similar results will also be obtained for $t(x)$ being reducible over \mathbb{F}_{p}. In this case we prove that the period $h(p)$ divides $(q-1) / 3$ where q is the number of elements of the splitting field of $t(x)$ over \mathbb{F}_{p} if and only if 2 is a cubic residue of \mathbb{F}_{p}.

