Jukka Pihko

Remarks on the "Greedy Odd" Egyptian Fraction Algorithm II, Fibonacci Quart. 48 (2010), no. 3, 202-208.

Abstract

Let a, b be positive, relatively prime integers with $a<b$ and b odd. Let $1 / x_{1}$ be the greatest Egyptian fraction with x_{1} odd and $1 / x_{1} \leq a / b$. We form the difference $a / b-1 / x_{1}=: a_{1} / b_{1}\left(\operatorname{with} \operatorname{gcd}\left(a_{1}, b_{1}\right)=1\right)$ and, if a_{1} / b_{1} is not zero, continue similarly. Given an odd prime p and $1<a<p$, we prove the existence of infinitely many odd numbers b such that $\operatorname{gcd}(a, b)=1, a<b$, and the sequence of numerators $a_{0}:=a, a_{1}, a_{2}, \ldots$ is $a, a+1, a+2, \ldots, p-1,1$.

