Jukka Pihko

Remarks on the "Greedy Odd" Egyptian Fraction Algorithm II, Fibonacci Quart. **48** (2010), no. 3, 202–208.

Abstract

Let a, b be positive, relatively prime integers with a < b and b odd. Let $1/x_1$ be the greatest Egyptian fraction with x_1 odd and $1/x_1 \le a/b$. We form the difference $a/b - 1/x_1 =: a_1/b_1$ (with $gcd(a_1, b_1) = 1$) and, if a_1/b_1 is not zero, continue similarly. Given an odd prime p and 1 < a < p, we prove the existence of infinitely many odd numbers b such that gcd(a, b) = 1, a < b, and the sequence of numerators $a_0 := a, a_1, a_2, \ldots$ is $a, a + 1, a + 2, \ldots, p - 1, 1$.