Ralf Bundschuh and Peter Bundschuh

 Distribution of Fibonacci and Lucas Numbers Modulo 3^{k}, Fibonacci Quart. 49 (2011), no. 3, 201-210.
Abstract

Let $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ denote the sequence \mathcal{F} of Fibonacci numbers. For any modulus $m \geq 2$ and residue $b(\bmod m)$, denote by $v_{\mathcal{F}}(m, b)$ the number of occurrences of b as a residue in one (shortest) period of \mathcal{F} modulo m. Moreover, let $v_{\mathcal{L}}(m, b)$ be similarly defined for the Lucas sequence \mathcal{L} satisfying $L_{0}=2, L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$.

In this paper, completing the recent partial work of Shiu and Chu we entirely describe the functions $v_{\mathcal{F}}\left(3^{k},.\right)$ and $v_{\mathcal{L}}\left(3^{k},.\right)$ for every positive integer k. Using a notion formally introduced by Carlip and Jacobson, our main results imply that neither \mathcal{F} nor \mathcal{L} is stable modulo 3 . Moreover, in terms of another notion introduced by Somer and Carlip, we observe that \mathcal{L} is a multiple of a translation of \mathcal{F} modulo 3^{k} (and conversely) for every k.

