Arthur T. Benjamin, Phyllis Chinn, Jacob N. Scott, and Greg Simay Combinatorics of Two-Toned Tilings, Fibonacci Quart. 49 (2011), no. 4, 290-297.

Abstract

We introduce the function $a(r, n)$ which counts tilings of length $n+r$ that utilize white tiles (whose lengths can vary between 1 and n) and r identical red squares. These tilings are called two-toned tilings. We provide combinatorial proofs of several identities satisfied by $a(r, n)$ and its generalizations, including one that produces k th order Fibonacci numbers. Applications to integer partitions are also provided.

