Joshua Ide and Marc S. Renault Power Fibonacci Sequences,
Fibonacci Quart. 50 (2012), no. 2, 175-179

Abstract

We examine integer sequences G satisfying the Fibonacci recurrence relation $G_{n}=G_{n-1}+G_{n-2}$ that also have the property $G \equiv 1, a, a^{2}, a^{3}, \ldots$ $(\bmod m)$ for some modulus m. We determine those moduli m for which these power Fibonacci sequences exist and the number of such sequences for a given m. We also provide formulas for the periods of these sequences, based on the period of the Fibonacci sequence F modulo m. Finally, we establish certain sequence/subsequence relationships between power Fibonacci sequences.

