Diego Marques and Pavel Trojovský
On Some New Sums of Fibonomial Coefficients, Fibonacci Quart. 50 (2012), no. 2, 155-162

Abstract

Let F_{n} be the nth Fibonacci number. The Fibonomial coefficients $\left[\begin{array}{l}n \\ k\end{array}\right]_{F}$ are defined for $n \geq k>0$ as follows

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{F}=\frac{F_{n} F_{n-1} \cdots F_{n-k+1}}{F_{1} F_{2} \cdots F_{k}},
$$

with $\left[\begin{array}{c}n \\ 0\end{array}\right]_{F}=1$ and $\left[\begin{array}{c}n \\ k\end{array}\right]_{F}=0$ for $n<k$. In this paper, we shall provide some interesting sums among Fibonomial coefficients. In particular, we prove that

$$
\sum_{j=0}^{4 m+2}(-1)^{\frac{j}{2}(j+1)}\left[\begin{array}{c}
4 m+2 \\
j
\end{array}\right]_{F} F_{n+4 m+2-j}=0,
$$

holds for all non-negative integers m and n.

