Donald M. Davis
p-adic Stirling numbers of the second kind,
Fibonacci Quart. 52 (2014), no. 3, 226-235.

Abstract

Let $S(n, k)$ denote the Stirling numbers of the second kind. We prove that the p-adic limit of $S\left(p^{e} a+c, p^{e} b+d\right)$ as $e \rightarrow \infty$ exists for any integers a, b, c, and d with $0<b \leq a$. We call the limiting p-adic integer $S\left(p^{\infty} a+c, p^{\infty} b+d\right)$. When $a \equiv b \bmod (p-1)$ or $d \leq 0$, we express them in terms of p-adic binomial coefficients $\binom{p^{\infty} \alpha-1}{p^{\infty} \beta}$ introduced in a recent paper.

